Advanced chunking & serializationยถ
Overviewยถ
In this notebook we show how to customize the serialization strategies that come into play during chunking.
Setupยถ
We will work with a document that contains some picture annotations:
from docling_core.types.doc.document import DoclingDocument SOURCE = "./data/2408.09869v3_enriched.json" doc = DoclingDocument.load_from_json(SOURCE) Below we define the chunker (for more details check out Hybrid Chunking):
from docling_core.transforms.chunker.hybrid_chunker import HybridChunker from docling_core.transforms.chunker.tokenizer.base import BaseTokenizer from docling_core.transforms.chunker.tokenizer.huggingface import HuggingFaceTokenizer from transformers import AutoTokenizer EMBED_MODEL_ID = "sentence-transformers/all-MiniLM-L6-v2" tokenizer: BaseTokenizer = HuggingFaceTokenizer( tokenizer=AutoTokenizer.from_pretrained(EMBED_MODEL_ID), ) chunker = HybridChunker(tokenizer=tokenizer) print(f"{tokenizer.get_max_tokens()=}") tokenizer.get_max_tokens()=512
Defining some helper methods:
from typing import Iterable, Optional from docling_core.transforms.chunker.base import BaseChunk from docling_core.transforms.chunker.hierarchical_chunker import DocChunk from docling_core.types.doc.labels import DocItemLabel from rich.console import Console from rich.panel import Panel console = Console( width=200, # for getting Markdown tables rendered nicely ) def find_n_th_chunk_with_label( iter: Iterable[BaseChunk], n: int, label: DocItemLabel ) -> Optional[DocChunk]: num_found = -1 for i, chunk in enumerate(iter): doc_chunk = DocChunk.model_validate(chunk) for it in doc_chunk.meta.doc_items: if it.label == label: num_found += 1 if num_found == n: return i, chunk return None, None def print_chunk(chunks, chunk_pos): chunk = chunks[chunk_pos] ctx_text = chunker.contextualize(chunk=chunk) num_tokens = tokenizer.count_tokens(text=ctx_text) doc_items_refs = [it.self_ref for it in chunk.meta.doc_items] title = f"{chunk_pos=} {num_tokens=} {doc_items_refs=}" console.print(Panel(ctx_text, title=title)) Table serializationยถ
Using the default strategyยถ
Below we inspect the first chunk containing a table โ using the default serialization strategy:
chunker = HybridChunker(tokenizer=tokenizer) chunk_iter = chunker.chunk(dl_doc=doc) chunks = list(chunk_iter) i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.TABLE) print_chunk( chunks=chunks, chunk_pos=i, ) Token indices sequence length is longer than the specified maximum sequence length for this model (652 > 512). Running this sequence through the model will result in indexing errors
โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ chunk_pos=13 num_tokens=426 doc_items_refs=['#/texts/72', '#/tables/0'] โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ Docling Technical Report โ โ 4 Performance โ โ Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution โ โ (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads. โ โ โ โ Apple M3 Max, Thread budget. = 4. Apple M3 Max, native backend.TTS = 177 s 167 s. Apple M3 Max, native backend.Pages/s = 1.27 1.34. Apple M3 Max, native backend.Mem = 6.20 GB. Apple M3 Max, โ โ pypdfium backend.TTS = 103 s 92 s. Apple M3 Max, pypdfium backend.Pages/s = 2.18 2.45. Apple M3 Max, pypdfium backend.Mem = 2.56 GB. (16 cores) Intel(R) Xeon E5-2690, Thread budget. = 16 4 16. (16 โ โ cores) Intel(R) Xeon E5-2690, native backend.TTS = 375 s 244 s. (16 cores) Intel(R) Xeon E5-2690, native backend.Pages/s = 0.60 0.92. (16 cores) Intel(R) Xeon E5-2690, native backend.Mem = 6.16 โ โ GB. (16 cores) Intel(R) Xeon E5-2690, pypdfium backend.TTS = 239 s 143 s. (16 cores) Intel(R) Xeon E5-2690, pypdfium backend.Pages/s = 0.94 1.57. (16 cores) Intel(R) Xeon E5-2690, pypdfium โ โ backend.Mem = 2.42 GB โ โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
HybridChunker can sometimes lead to a warning from the transformers library, however this is a "false alarm" โ for details check here. Configuring a different strategyยถ
We can configure a different serialization strategy. In the example below, we specify a different table serializer that serializes tables to Markdown instead of the triplet notation used by default:
from docling_core.transforms.chunker.hierarchical_chunker import ( ChunkingDocSerializer, ChunkingSerializerProvider, ) from docling_core.transforms.serializer.markdown import MarkdownTableSerializer class MDTableSerializerProvider(ChunkingSerializerProvider): def get_serializer(self, doc): return ChunkingDocSerializer( doc=doc, table_serializer=MarkdownTableSerializer(), # configuring a different table serializer ) chunker = HybridChunker( tokenizer=tokenizer, serializer_provider=MDTableSerializerProvider(), ) chunk_iter = chunker.chunk(dl_doc=doc) chunks = list(chunk_iter) i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.TABLE) print_chunk( chunks=chunks, chunk_pos=i, ) โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ chunk_pos=13 num_tokens=431 doc_items_refs=['#/texts/72', '#/tables/0'] โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ Docling Technical Report โ โ 4 Performance โ โ Table 1: Runtime characteristics of Docling with the standard model pipeline and settings, on our test dataset of 225 pages, on two different systems. OCR is disabled. We show the time-to-solution โ โ (TTS), computed throughput in pages per second, and the peak memory used (resident set size) for both the Docling-native PDF backend and for the pypdfium backend, using 4 and 16 threads. โ โ โ โ | CPU | Thread budget | native backend | native backend | native backend | pypdfium backend | pypdfium backend | pypdfium backend | โ โ |----------------------------------|-----------------|------------------|------------------|------------------|--------------------|--------------------|--------------------| โ โ | | | TTS | Pages/s | Mem | TTS | Pages/s | Mem | โ โ | Apple M3 Max | 4 | 177 s 167 s | 1.27 1.34 | 6.20 GB | 103 s 92 s | 2.18 2.45 | 2.56 GB | โ โ | (16 cores) Intel(R) Xeon E5-2690 | 16 4 16 | 375 s 244 s | 0.60 0.92 | 6.16 GB | 239 s 143 s | 0.94 1.57 | 2.42 GB | โ โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
Picture serializationยถ
Using the default strategyยถ
Below we inspect the first chunk containing a picture.
Even when using the default strategy, we can modify the relevant parameters, e.g. which placeholder is used for pictures:
from docling_core.transforms.serializer.markdown import MarkdownParams class ImgPlaceholderSerializerProvider(ChunkingSerializerProvider): def get_serializer(self, doc): return ChunkingDocSerializer( doc=doc, params=MarkdownParams( image_placeholder="<!-- image -->", ), ) chunker = HybridChunker( tokenizer=tokenizer, serializer_provider=ImgPlaceholderSerializerProvider(), ) chunk_iter = chunker.chunk(dl_doc=doc) chunks = list(chunk_iter) i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.PICTURE) print_chunk( chunks=chunks, chunk_pos=i, ) โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ chunk_pos=0 num_tokens=117 doc_items_refs=['#/pictures/0', '#/texts/2', '#/texts/3', '#/texts/4'] โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ Docling Technical Report โ โ <!-- image --> โ โ Version 1.0 โ โ Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta โ โ Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar โ โ AI4K Group, IBM Research Rยจ uschlikon, Switzerland โ โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ
Using a custom strategyยถ
Below we define and use our custom picture serialization strategy which leverages picture annotations:
from typing import Any from docling_core.transforms.serializer.base import ( BaseDocSerializer, SerializationResult, ) from docling_core.transforms.serializer.common import create_ser_result from docling_core.transforms.serializer.markdown import MarkdownPictureSerializer from docling_core.types.doc.document import ( PictureClassificationData, PictureDescriptionData, PictureItem, PictureMoleculeData, ) from typing_extensions import override class AnnotationPictureSerializer(MarkdownPictureSerializer): @override def serialize( self, *, item: PictureItem, doc_serializer: BaseDocSerializer, doc: DoclingDocument, **kwargs: Any, ) -> SerializationResult: text_parts: list[str] = [] for annotation in item.annotations: if isinstance(annotation, PictureClassificationData): predicted_class = ( annotation.predicted_classes[0].class_name if annotation.predicted_classes else None ) if predicted_class is not None: text_parts.append(f"Picture type: {predicted_class}") elif isinstance(annotation, PictureMoleculeData): text_parts.append(f"SMILES: {annotation.smi}") elif isinstance(annotation, PictureDescriptionData): text_parts.append(f"Picture description: {annotation.text}") text_res = "\n".join(text_parts) text_res = doc_serializer.post_process(text=text_res) return create_ser_result(text=text_res, span_source=item) class ImgAnnotationSerializerProvider(ChunkingSerializerProvider): def get_serializer(self, doc: DoclingDocument): return ChunkingDocSerializer( doc=doc, picture_serializer=AnnotationPictureSerializer(), # configuring a different picture serializer ) chunker = HybridChunker( tokenizer=tokenizer, serializer_provider=ImgAnnotationSerializerProvider(), ) chunk_iter = chunker.chunk(dl_doc=doc) chunks = list(chunk_iter) i, chunk = find_n_th_chunk_with_label(chunks, n=0, label=DocItemLabel.PICTURE) print_chunk( chunks=chunks, chunk_pos=i, ) โญโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ chunk_pos=0 num_tokens=128 doc_items_refs=['#/pictures/0', '#/texts/2', '#/texts/3', '#/texts/4'] โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ โ Docling Technical Report โ โ Picture description: In this image we can see a cartoon image of a duck holding a paper. โ โ Version 1.0 โ โ Christoph Auer Maksym Lysak Ahmed Nassar Michele Dolfi Nikolaos Livathinos Panos Vagenas Cesar Berrospi Ramis Matteo Omenetti Fabian Lindlbauer Kasper Dinkla Lokesh Mishra Yusik Kim Shubham Gupta โ โ Rafael Teixeira de Lima Valery Weber Lucas Morin Ingmar Meijer Viktor Kuropiatnyk Peter W. J. Staar โ โ AI4K Group, IBM Research Rยจ uschlikon, Switzerland โ โฐโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ