Neural Contextual Bandits with UCB-based Exploration (NeuralUCB)¶
NeuralUCB utilizes the representational capabilities of deep neural networks and employs a neural network-based random feature mapping to create an upper confidence bound (UCB) for reward, enabling efficient exploration.
This is a contextual multi-armed bandit algorithm, meaning it is suited to RL problems with just a single timestep.
Example¶
from tensordict import TensorDict from agilerl.algorithms.neural_ucb import NeuralUCB from agilerl.components.replay_buffer import ReplayBuffer from agilerl.wrappers.learning import BanditEnv # Fetch data https://archive.ics.uci.edu/ iris = fetch_ucirepo(id=53) features = iris.data.features targets = iris.data.targets # Create environment env = BanditEnv(features, targets) context_dim = env.context_dim action_dim = env.arms memory = ReplayBuffer(max_size=10000) observation_space = spaces.Box(low=features.values.min(), high=features.values.max()) action_space = spaces.Discrete(action_dim) bandit = NeuralUCB(observation_space, action_space) # Create NeuralUCB agent context = env.reset() # Reset environment at start of episode for _ in range(500): # Get next action from agent action = agent.get_action(context) next_context, reward = env.step(action) # Act in environment # Save experience to replay buffer transition = TensorDict({ "obs": context[action], "reward": reward, }, batch_size=[1] ) memory.add(transition) # Learn according to learning frequency if len(memory) >= agent.batch_size: for _ in range(agent.learn_step): experiences = memory.sample(agent.batch_size) # Sample replay buffer agent.learn(experiences) # Learn according to agent's RL algorithm context = next_context Neural Network Configuration¶
To configure the architecture of the network’s encoder / head, pass a kwargs dict to the NeuralUCB net_config field. Full arguments can be found in the documentation of EvolvableMLP, EvolvableCNN, and EvolvableMultiInput.
For discrete / vector observations:
NET_CONFIG = { "encoder_config": {'hidden_size': [32, 32]}, # Network head hidden size "head_config": {'hidden_size': [32]} # Network head hidden size } For image observations:
NET_CONFIG = { "encoder_config": { 'channel_size': [32, 32], # CNN channel size 'kernel_size': [8, 4], # CNN kernel size 'stride_size': [4, 2], # CNN stride size }, "head_config": {'hidden_size': [32]} # Network head hidden size } For dictionary / tuple observations containing any combination of image, discrete, and vector observations:
CNN_CONFIG = { "channel_size": [32, 32], # CNN channel size "kernel_size": [8, 4], # CNN kernel size "stride_size": [4, 2], # CNN stride size } NET_CONFIG = { "encoder_config": { "latent_dim": 32, # Config for nested EvolvableCNN objects "cnn_config": CNN_CONFIG, # Config for nested EvolvableMLP objects "mlp_config": { "hidden_size": [32, 32] }, "vector_space_mlp": True # Process vector observations with an MLP }, "head_config": {'hidden_size': [32]} # Network head hidden size } agent = NeuralUCB(observation_space, action_space, net_config=NET_CONFIG) # Create NeuralUCB agent Evolutionary Hyperparameter Optimization¶
AgileRL allows for efficient hyperparameter optimization during training to provide state-of-the-art results in a fraction of the time. For more information on how this is done, please refer to the Evolutionary Hyperparameter Optimization documentation.
Saving and Loading Agents¶
To save an agent, use the save_checkpoint method:
from agilerl.algorithms.neural_ucb import NeuralUCB agent = NeuralUCB(observation_space, action_space) # Create NeuralUCB agent checkpoint_path = "path/to/checkpoint" agent.save_checkpoint(checkpoint_path) To load a saved agent, use the load method:
from agilerl.algorithms.neural_ucb import NeuralUCB checkpoint_path = "path/to/checkpoint" agent = NeuralUCB.load(checkpoint_path) Parameters¶
- class agilerl.algorithms.neural_ucb_bandit.NeuralUCB(*args, **kwargs)¶
Neural Upper Confidence Bound (UCB) algorithm.
Paper: https://arxiv.org/abs/1911.04462
- Parameters:
observation_space (gym.spaces.Space) – Observation space of the environment
action_space (gym.spaces.Space) – Action space of the environment
index (int, optional) – Index to keep track of object instance during tournament selection and mutation, defaults to 0
hp_config (HyperparameterConfig, optional) – RL hyperparameter mutation configuration, defaults to None, whereby algorithm mutations are disabled.
net_config (dict, optional) – Network configuration, defaults to None
gamma (float, optional) – Positive scaling factor, defaults to 1.0
lamb (float, optional) – Regularization parameter lambda, defaults to 1.0
reg (float, optional) – Loss regularization parameter, defaults to 0.000625
batch_size (int, optional) – Size of batched sample from replay buffer for learning, defaults to 64
normalize_images (bool, optional) – Flag to normalize images, defaults to True
lr (float, optional) – Learning rate for optimizer, defaults to 1e-3
learn_step (int, optional) – Learning frequency, defaults to 2
mut (str, optional) – Most recent mutation to agent, defaults to None
actor_network (EvolvableModule, optional) – Custom actor network, defaults to None
device (str, optional) – Device for accelerated computing, ‘cpu’ or ‘cuda’, defaults to ‘cpu’
accelerator (accelerate.Accelerator(), optional) – Accelerator for distributed computing, defaults to None
wrap (bool, optional) – Wrap models for distributed training upon creation, defaults to True
- clone(index: int | None = None, wrap: bool = True) SelfEvolvableAlgorithm¶
Creates a clone of the algorithm.
- Parameters:
- Returns:
A clone of the algorithm
- Return type:
- static copy_attributes(agent: SelfEvolvableAlgorithm, clone: SelfEvolvableAlgorithm) SelfEvolvableAlgorithm¶
Copies the non-evolvable attributes of the algorithm to a clone.
- Parameters:
clone (SelfEvolvableAlgorithm) – The clone of the algorithm.
- Returns:
The clone of the algorithm.
- Return type:
SelfEvolvableAlgorithm
- evolvable_attributes(networks_only: bool = False) dict[str, EvolvableModule | ModuleDict | Optimizer | dict[str, Optimizer] | OptimizerWrapper]¶
Returns the attributes related to the evolvable networks in the algorithm. Includes attributes that are either EvolvableModule or ModuleDict objects, as well as the optimizers associated with the networks.
- get_action(obs: ndarray | dict[str, ndarray] | tuple[ndarray, ...] | Tensor | TensorDict | tuple[Tensor, ...] | dict[str, Tensor] | Number | list[ReasoningPrompts], action_mask: ndarray | None = None) int¶
Returns the next action to take in the environment.
- static get_action_dim(action_space: Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary | list[Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary]) tuple[int, ...]¶
Returns the dimension of the action space as it pertains to the underlying networks (i.e. the output size of the networks).
- Parameters:
action_space (spaces.Space or list[spaces.Space].) – The action space of the environment.
- Returns:
The dimension of the action space.
- Return type:
int.
- get_policy() EvolvableModule¶
Returns the policy network of the algorithm.
- static get_state_dim(observation_space: Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary | list[Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary]) tuple[int, ...]¶
Returns the dimension of the state space as it pertains to the underlying networks (i.e. the input size of the networks).
- static inspect_attributes(agent: SelfEvolvableAlgorithm, input_args_only: bool = False) dict[str, Any]¶
Inspect and retrieve the attributes of the current object, excluding attributes related to the underlying evolvable networks (i.e. EvolvableModule, torch.optim.Optimizer) and with an option to include only the attributes that are input arguments to the constructor.
- learn(experiences: dict[str, ndarray | dict[str, ndarray] | tuple[ndarray, ...] | Tensor | TensorDict | tuple[Tensor, ...] | dict[str, Tensor] | Number | list[ReasoningPrompts]] | tuple[ndarray | dict[str, ndarray] | tuple[ndarray, ...] | Tensor | TensorDict | tuple[Tensor, ...] | dict[str, Tensor] | Number | list[ReasoningPrompts], ...]) float¶
Updates agent network parameters to learn from experiences.
- classmethod load(path: str, device: str | device = 'cpu', accelerator: Accelerator | None = None) SelfEvolvableAlgorithm¶
Loads an algorithm from a checkpoint.
- Parameters:
path (string) – Location to load checkpoint from.
device (str, optional) – Device to load the algorithm on, defaults to ‘cpu’
accelerator (Optional[Accelerator], optional) – Accelerator object for distributed computing, defaults to None
- Returns:
An instance of the algorithm
- Return type:
- load_checkpoint(path: str) None¶
Loads saved agent properties and network weights from checkpoint.
- Parameters:
path (string) – Location to load checkpoint from
- classmethod population(size: int, observation_space: Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary | list[Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary], action_space: Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary | list[Box | Discrete | MultiDiscrete | Dict | Tuple | MultiBinary], wrapper_cls: type[SelfAgentWrapper] | None = None, wrapper_kwargs: dict[str, Any] = {}, **kwargs) list[SelfEvolvableAlgorithm | SelfAgentWrapper]¶
Creates a population of algorithms.
- Parameters:
size (int.) – The size of the population.
- Returns:
A list of algorithms.
- Return type:
list[SelfEvolvableAlgorithm].
- preprocess_observation(observation: ndarray | dict[str, ndarray] | tuple[ndarray, ...] | Tensor | TensorDict | tuple[Tensor, ...] | dict[str, Tensor] | Number | list[ReasoningPrompts]) Tensor | TensorDict | tuple[Tensor, ...] | dict[str, Tensor]¶
Preprocesses observations for forward pass through neural network.
- recompile() None¶
Recompiles the evolvable modules in the algorithm with the specified torch compiler.
- register_mutation_hook(hook: Callable) None¶
Registers a hook to be executed after a mutation is performed on the algorithm.
- Parameters:
hook (Callable) – The hook to be executed after mutation.
- register_network_group(group: NetworkGroup) None¶
Sets the evaluation network for the algorithm.
- Parameters:
name (str) – The name of the evaluation network.
- reinit_optimizers(optimizer: OptimizerConfig | None = None) None¶
Reinitialize the optimizers of an algorithm. If no optimizer is passed, all optimizers are reinitialized.
- Parameters:
optimizer (Optional[OptimizerConfig], optional) – The optimizer to reinitialize, defaults to None, in which case all optimizers are reinitialized.
- save_checkpoint(path: str) None¶
Saves a checkpoint of agent properties and network weights to path.
- Parameters:
path (string) – Location to save checkpoint at
- set_training_mode(training: bool) None¶
Sets the training mode of the algorithm.
- Parameters:
training (bool) – If True, set the algorithm to training mode.
- test(env: str | Env | VectorEnv | AsyncVectorEnv, swap_channels: bool = False, max_steps: int = 100, loop: int = 1) float¶
Returns mean test score of agent in environment with epsilon-greedy policy.
- Parameters:
env (Gym-style environment) – The environment to be tested in
swap_channels (bool, optional) – Swap image channels dimension from last to first [H, W, C] -> [C, H, W], defaults to False
max_steps (int, optional) – Maximum number of testing steps, defaults to 500
loop (int, optional) – Number of testing loops/episodes to complete. The returned score is the mean over these tests. Defaults to 3
- Returns:
Mean test score of agent in environment
- Return type: