Get Started with Image Curation#
This guide helps you set up and get started with NeMo Curator’s image curation capabilities. Follow these steps to prepare your environment and run your first image curation pipeline.
Prerequisites#
To use NeMo Curator’s image curation modules, ensure you meet the following requirements:
Python 3.10, 3.11, or 3.12
packaging >= 22.0
Ubuntu 22.04/20.04
NVIDIA GPU (required for all image modules)
Volta™ or higher (compute capability 7.0+)
CUDA 12 (or above)
Tip
If you don’t have uv installed, refer to the Installation Guide for setup instructions, or install it quickly with:
curl -LsSf https://astral.sh/uv/0.8.22/install.sh | sh source $HOME/.local/bin/env Installation Options#
You can install NeMo Curator in three ways:
Install the image modules from PyPI:
uv pip install "nemo-curator[image_cuda12]" Install the latest version directly from GitHub using uv:
git clone https://github.com/NVIDIA-NeMo/Curator.git cd Curator uv sync --extra image_cuda12 Activate the environment and run your code:
source .venv/bin/activate python your_script.py NeMo Curator is available as a standalone container:
# Pull the container docker pull nvcr.io/nvidia/nemo-curator:25.09 # Run the container docker run --gpus all -it --rm nvcr.io/nvidia/nemo-curator:25.09 See also
For details on container environments and configurations, see Container Environments.
Download Sample Configuration#
NeMo Curator provides a working image curation example in the Image Curation Tutorial. You can adapt this pipeline for your own datasets.
Set Up Data Directory#
Create directories to store your image datasets and models:
mkdir -p ~/nemo_curator/data/tar_archives mkdir -p ~/nemo_curator/data/curated mkdir -p ~/nemo_curator/models For this example, you’ll need:
Tar Archives: JPEG images in
.tarfiles (text and JSON files are ignored during loading)Model Directory: CLIP and classifier model weights (downloaded automatically on first run)
Basic Image Curation Example#
Here’s a simple example to get started with NeMo Curator’s image curation pipeline:
from nemo_curator.pipeline import Pipeline from nemo_curator.backends.xenna import XennaExecutor from nemo_curator.stages.file_partitioning import FilePartitioningStage from nemo_curator.stages.image.io.image_reader import ImageReaderStage from nemo_curator.stages.image.embedders.clip_embedder import ImageEmbeddingStage from nemo_curator.stages.image.filters.aesthetic_filter import ImageAestheticFilterStage from nemo_curator.stages.image.filters.nsfw_filter import ImageNSFWFilterStage from nemo_curator.stages.image.io.image_writer import ImageWriterStage # Create image curation pipeline pipeline = Pipeline(name="image_curation", description="Basic image curation with quality filtering") # Stage 1: Partition tar files for parallel processing pipeline.add_stage(FilePartitioningStage( file_paths="~/nemo_curator/data/tar_archives", # Path to your tar archive directory files_per_partition=1, file_extensions=[".tar"], )) # Stage 2: Read images from tar files using DALI pipeline.add_stage(ImageReaderStage( batch_size=100, verbose=True, num_threads=8, num_gpus_per_worker=0.25, )) # Stage 3: Generate CLIP embeddings for images pipeline.add_stage(ImageEmbeddingStage( model_dir="~/nemo_curator/models", # Directory containing model weights model_inference_batch_size=32, num_gpus_per_worker=0.25, remove_image_data=False, verbose=True, )) # Stage 4: Filter by aesthetic quality (keep images with score >= 0.5) pipeline.add_stage(ImageAestheticFilterStage( model_dir="~/nemo_curator/models", score_threshold=0.5, model_inference_batch_size=32, num_gpus_per_worker=0.25, verbose=True, )) # Stage 5: Filter NSFW content (remove images with score >= 0.5) pipeline.add_stage(ImageNSFWFilterStage( model_dir="~/nemo_curator/models", score_threshold=0.5, model_inference_batch_size=32, num_gpus_per_worker=0.25, verbose=True, )) # Stage 6: Save curated images to new tar archives pipeline.add_stage(ImageWriterStage( output_dir="~/nemo_curator/data/curated", images_per_tar=1000, remove_image_data=True, verbose=True, )) # Execute the pipeline executor = XennaExecutor() pipeline.run(executor) Expected Output#
After running the pipeline, you’ll have:
~/nemo_curator/data/curated/ ├── images-{hash}-000000.tar # Curated images (first shard) ├── images-{hash}-000000.parquet # Metadata for corresponding tar ├── images-{hash}-000001.tar # Curated images (second shard) ├── images-{hash}-000001.parquet # Metadata for corresponding tar ├── ... # Additional shards as needed Output Format Details:
Tar Files: Contain high-quality
.jpgfiles that passed both aesthetic and NSFW filteringParquet Files: Contain metadata for each corresponding tar file, including image paths, IDs, and processing scores
Naming Convention: Files use hash-based prefixes (e.g.,
images-a1b2c3d4e5f6-000000.tar) for uniqueness across distributed processingScores: Processing metadata includes
aesthetic_scoreandnsfw_scorestored in the Parquet files
Alternative: Using the Complete Tutorial#
For a more comprehensive example with data download and more configuration options, see:
# Download the complete tutorial wget -O ~/nemo_curator/image_curation_example.py https://raw.githubusercontent.com/NVIDIA/NeMo-Curator/main/tutorials/image/getting-started/image_curation_example.py # Run with your data python ~/nemo_curator/image_curation_example.py \ --input-tar-dataset-dir ~/nemo_curator/data/tar_archives \ --output-dataset-dir ~/nemo_curator/data/curated \ --model-dir ~/nemo_curator/models \ --aesthetic-threshold 0.5 \ --nsfw-threshold 0.5 Next Steps#
Explore the Image Curation documentation for more advanced processing techniques:
Tar Archive Loading - Learn about loading JPEG images from tar files
CLIP Embeddings - Understand embedding generation
Quality Filtering - Advanced aesthetic and NSFW filtering
Complete Tutorial - Full working example with data download