Get Started with Image Curation#

This guide helps you set up and get started with NeMo Curator’s image curation capabilities. Follow these steps to prepare your environment and run your first image curation pipeline.

Prerequisites#

To use NeMo Curator’s image curation modules, ensure you meet the following requirements:

  • Python 3.10, 3.11, or 3.12

    • packaging >= 22.0

  • Ubuntu 22.04/20.04

  • NVIDIA GPU (required for all image modules)

    • Volta™ or higher (compute capability 7.0+)

    • CUDA 12 (or above)

Tip

If you don’t have uv installed, refer to the Installation Guide for setup instructions, or install it quickly with:

curl -LsSf https://astral.sh/uv/0.8.22/install.sh | sh source $HOME/.local/bin/env 

Installation Options#

You can install NeMo Curator in three ways:

Install the image modules from PyPI:

uv pip install "nemo-curator[image_cuda12]" 

Install the latest version directly from GitHub using uv:

git clone https://github.com/NVIDIA-NeMo/Curator.git cd Curator uv sync --extra image_cuda12 

Activate the environment and run your code:

source .venv/bin/activate python your_script.py 

NeMo Curator is available as a standalone container:

# Pull the container docker pull nvcr.io/nvidia/nemo-curator:25.09 # Run the container docker run --gpus all -it --rm nvcr.io/nvidia/nemo-curator:25.09 

See also

For details on container environments and configurations, see Container Environments.

Download Sample Configuration#

NeMo Curator provides a working image curation example in the Image Curation Tutorial. You can adapt this pipeline for your own datasets.

Set Up Data Directory#

Create directories to store your image datasets and models:

mkdir -p ~/nemo_curator/data/tar_archives mkdir -p ~/nemo_curator/data/curated mkdir -p ~/nemo_curator/models 

For this example, you’ll need:

  • Tar Archives: JPEG images in .tar files (text and JSON files are ignored during loading)

  • Model Directory: CLIP and classifier model weights (downloaded automatically on first run)

Basic Image Curation Example#

Here’s a simple example to get started with NeMo Curator’s image curation pipeline:

from nemo_curator.pipeline import Pipeline from nemo_curator.backends.xenna import XennaExecutor from nemo_curator.stages.file_partitioning import FilePartitioningStage from nemo_curator.stages.image.io.image_reader import ImageReaderStage from nemo_curator.stages.image.embedders.clip_embedder import ImageEmbeddingStage from nemo_curator.stages.image.filters.aesthetic_filter import ImageAestheticFilterStage from nemo_curator.stages.image.filters.nsfw_filter import ImageNSFWFilterStage from nemo_curator.stages.image.io.image_writer import ImageWriterStage # Create image curation pipeline pipeline = Pipeline(name="image_curation", description="Basic image curation with quality filtering") # Stage 1: Partition tar files for parallel processing pipeline.add_stage(FilePartitioningStage( file_paths="~/nemo_curator/data/tar_archives", # Path to your tar archive directory files_per_partition=1, file_extensions=[".tar"], )) # Stage 2: Read images from tar files using DALI pipeline.add_stage(ImageReaderStage( batch_size=100, verbose=True, num_threads=8, num_gpus_per_worker=0.25, )) # Stage 3: Generate CLIP embeddings for images pipeline.add_stage(ImageEmbeddingStage( model_dir="~/nemo_curator/models", # Directory containing model weights model_inference_batch_size=32, num_gpus_per_worker=0.25, remove_image_data=False, verbose=True, )) # Stage 4: Filter by aesthetic quality (keep images with score >= 0.5) pipeline.add_stage(ImageAestheticFilterStage( model_dir="~/nemo_curator/models", score_threshold=0.5, model_inference_batch_size=32, num_gpus_per_worker=0.25, verbose=True, )) # Stage 5: Filter NSFW content (remove images with score >= 0.5) pipeline.add_stage(ImageNSFWFilterStage( model_dir="~/nemo_curator/models", score_threshold=0.5, model_inference_batch_size=32, num_gpus_per_worker=0.25, verbose=True, )) # Stage 6: Save curated images to new tar archives pipeline.add_stage(ImageWriterStage( output_dir="~/nemo_curator/data/curated", images_per_tar=1000, remove_image_data=True, verbose=True, )) # Execute the pipeline executor = XennaExecutor() pipeline.run(executor) 

Expected Output#

After running the pipeline, you’ll have:

~/nemo_curator/data/curated/ ├── images-{hash}-000000.tar # Curated images (first shard) ├── images-{hash}-000000.parquet # Metadata for corresponding tar ├── images-{hash}-000001.tar # Curated images (second shard) ├── images-{hash}-000001.parquet # Metadata for corresponding tar ├── ... # Additional shards as needed 

Output Format Details:

  • Tar Files: Contain high-quality .jpg files that passed both aesthetic and NSFW filtering

  • Parquet Files: Contain metadata for each corresponding tar file, including image paths, IDs, and processing scores

  • Naming Convention: Files use hash-based prefixes (e.g., images-a1b2c3d4e5f6-000000.tar) for uniqueness across distributed processing

  • Scores: Processing metadata includes aesthetic_score and nsfw_score stored in the Parquet files

Alternative: Using the Complete Tutorial#

For a more comprehensive example with data download and more configuration options, see:

# Download the complete tutorial wget -O ~/nemo_curator/image_curation_example.py https://raw.githubusercontent.com/NVIDIA/NeMo-Curator/main/tutorials/image/getting-started/image_curation_example.py # Run with your data python ~/nemo_curator/image_curation_example.py \  --input-tar-dataset-dir ~/nemo_curator/data/tar_archives \  --output-dataset-dir ~/nemo_curator/data/curated \  --model-dir ~/nemo_curator/models \  --aesthetic-threshold 0.5 \  --nsfw-threshold 0.5 

Next Steps#

Explore the Image Curation documentation for more advanced processing techniques: