Trying to clarify MIMO angle resolution with equations and getting a bit confused. Using this paper's notations ($M$: number of RX, $N$: number of TX, $L$: number of snapshots), the RX signal matrix is written:
where:
- $a_r$ is the RX steering vector $C^{M \times 1}$
- $a_t$ is the TX steering vector $C^{N \times 1}$
- $\beta$ is the reflection coefficient (scalar)
- $S$ is the TX signal matrix $C^{N \times L}$
- $X$ is the RX signal matrix $C^{M \times L}$
- $Z$ is the noise matrix $C^{M \times L}$
According to this TI MIMO application report doc we can use 3 FFT to get range, Doppler and angle information. My understanding is that the previous RX signal matrix contains $L$ snapshots for $M$ RX antennas, which means I can use the following $L \times L$ FFT matrix:
$ \begin{equation*} FFT_{RANGE} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \exp(j2\pi \frac{i}{L}) & \cdots & \exp(j2\pi \frac{i(L-1)}{L}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \exp(j2\pi \frac{(L-1)}{L}) & \cdots & \exp(j2\pi \frac{(L-1)^2}{L}) \end{pmatrix} \end{equation*} $
to retrieve range information with the $FFT_{RANGE} \times X^T$ matrix multiplication, and the following $M \times M$ FFT matrix:
$ \begin{equation*} FFT_{ANGLE} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \exp(j2\pi \frac{i}{M}) & \cdots & \exp(j2\pi \frac{i(M-1)}{M}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \exp(j2\pi \frac{(M-1)}{M}) & \cdots & \exp(j2\pi \frac{(M-1)^2}{M}) \end{pmatrix} \end{equation*} $
to retrieve angle information in the unambiguous range $+/- 90°$ with the $FFT_{ANGLE} \times (FFT_{RANGE} \times X^T)^T$ matrix multiplication. Beyond confirming this is correct, I'm wondering:
- how can I make the $N \times M$ virtual array size appear in my equations to reveal the actual angle resolution (under an ULA array hypothesis) of the angle FFT ?
- the missing Doppler information requires extending the RX signal matrix $X$ along a new "chirps" dimension ? Assuming this chirp dimension carries $H$ samples we would then multiply the cube with the following (third) $H \times H$ FFT matrix:
$ \begin{equation*} FFT_{DOPPLER} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \exp(j2\pi \frac{i}{H}) & \cdots & \exp(j2\pi \frac{i(H-1)}{H}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \exp(j2\pi \frac{(H-1)}{H}) & \cdots & \exp(j2\pi \frac{(H-1)^2}{H}) \end{pmatrix} \end{equation*} $
to retrieve Doppler information.
Regarding Capon, the paper referenced at the beginning of my message additionally shows that the presence of obstacles at a given angle $\theta$ can be evaluated using the Capon estimate:
but here again, where would the virtual ULA array size $M \times N$ be to reveal the actual angle resolution of the target DoA estimation ? In the corresponding Cramer Rao bound for the $\beta$ estimator ?

