Skip to main content
1 of 7
Matt L.
  • 94.8k
  • 10
  • 85
  • 190

Nice question! The Hilbert transform $\mathcal{H}\left\{f(\omega)\right\}$ with

$$f(\omega)=-\frac12\log(1+\omega^2)\tag{1}$$

can be calculated in the following way. First, note that

$$\frac{df(\omega)}{d\omega}=-\frac{\omega}{1+\omega^2}\tag{2}$$

From this table we know that

$$\mathcal{H}\left\{\frac{1}{1+\omega^2}\right\}=\frac{\omega}{1+\omega^2}\tag{3}$$

We also know that

$$\mathcal{H}\{\mathcal{H}\{f\}\}=-f\tag{4}$$

Combining $(3)$ and $(4)$ we get

$$\mathcal{H}\left\{\frac{\omega}{1+\omega^2}\right\}=\mathcal{H}\left\{\mathcal{H}\left\{\frac{1}{1+\omega^2}\right\}\right\}=-\frac{1}{1+\omega^2}\tag{5}$$

So

$$\mathcal{H}\left\{\frac{df(\omega)}{d\omega}\right\}=\frac{1}{1+\omega^2}\tag{6}$$

Now we also know that the Hilbert transform operator and the differentiation operator commute:

$$\mathcal{H}\left\{\frac{df(\omega)}{d\omega}\right\}=\frac{d}{d\omega}\mathcal{H}\{f(\omega)\}\tag{7}$$

which yields

$$\frac{d}{d\omega}\mathcal{H}\{f(\omega)\}=\frac{1}{1+\omega^2}\tag{8}$$

Integrating $(8)$ finally gives

$$\mathcal{H}\{f(\omega)\}=\arctan(\omega)\tag{9}$$

Matt L.
  • 94.8k
  • 10
  • 85
  • 190