Skip to main content
added 330 characters in body
Source Link
Harry Svensson
  • 8.3k
  • 3
  • 35
  • 53

Q: \$\overline{x}y+x\overline{y}+\overline{y}z\$, Turn this into NOT and OR gates only.


Just apply De Morgan's law on each of them individually.

Here's a refreshener:

\$\overline{AB}=\overline{A}+\overline{B}\$

\$\overline{A+B}=\bar{A}\bar{B}\$

\$\overline{\overline{A}}=A\$


First add some not gates.

\$\overline{\overline{\overline{x}y}}+\overline{\overline{x\overline{y}}}+\overline{\overline{\overline{y}z}}\$

Then De Morgan them to the maximum.

Here's the continuation in hidden format, I do encourage you to apply De Morgan's law on your own.

\$\overline{\overline{\overline{x}}+\overline{y}}+\overline{\overline{x}+\overline{\overline{y}}}+\overline{\overline{\overline{y}}+\overline{z}}\$

And after you've applied De Morgan's Law, then you might want to remove unnecessary gates. Use these two yellow boxes as a way to control that you've calculated correctly.

\$\overline{x+\overline{y}}+\overline{\overline{x}+y}+\overline{y+\overline{z}}\$


This is how it looks like in a schematic.

schematic

Q: \$\overline{x}y+x\overline{y}+\overline{y}z\$, Turn this into NOT and OR gates only.


Just apply De Morgan's law on each of them individually.

Here's a refreshener:

\$\overline{AB}=\overline{A}+\overline{B}\$

\$\overline{A+B}=\bar{A}\bar{B}\$

\$\overline{\overline{A}}=A\$


First add some not gates.

\$\overline{\overline{\overline{x}y}}+\overline{\overline{x\overline{y}}}+\overline{\overline{\overline{y}z}}\$

Then De Morgan them to the maximum.

Here's the continuation in hidden format, I do encourage you to apply De Morgan's law on your own.

\$\overline{\overline{\overline{x}}+\overline{y}}+\overline{\overline{x}+\overline{\overline{y}}}+\overline{\overline{\overline{y}}+\overline{z}}\$

And after you've applied De Morgan's Law, then you might want to remove unnecessary gates. Use these two yellow boxes as a way to control that you've calculated correctly.

\$\overline{x+\overline{y}}+\overline{\overline{x}+y}+\overline{y+\overline{z}}\$

Q: \$\overline{x}y+x\overline{y}+\overline{y}z\$, Turn this into NOT and OR gates only.


Just apply De Morgan's law on each of them individually.

Here's a refreshener:

\$\overline{AB}=\overline{A}+\overline{B}\$

\$\overline{A+B}=\bar{A}\bar{B}\$

\$\overline{\overline{A}}=A\$


First add some not gates.

\$\overline{\overline{\overline{x}y}}+\overline{\overline{x\overline{y}}}+\overline{\overline{\overline{y}z}}\$

Then De Morgan them to the maximum.

Here's the continuation in hidden format, I do encourage you to apply De Morgan's law on your own.

\$\overline{\overline{\overline{x}}+\overline{y}}+\overline{\overline{x}+\overline{\overline{y}}}+\overline{\overline{\overline{y}}+\overline{z}}\$

And after you've applied De Morgan's Law, then you might want to remove unnecessary gates. Use these two yellow boxes as a way to control that you've calculated correctly.

\$\overline{x+\overline{y}}+\overline{\overline{x}+y}+\overline{y+\overline{z}}\$


This is how it looks like in a schematic.

schematic

Source Link
Harry Svensson
  • 8.3k
  • 3
  • 35
  • 53

Q: \$\overline{x}y+x\overline{y}+\overline{y}z\$, Turn this into NOT and OR gates only.


Just apply De Morgan's law on each of them individually.

Here's a refreshener:

\$\overline{AB}=\overline{A}+\overline{B}\$

\$\overline{A+B}=\bar{A}\bar{B}\$

\$\overline{\overline{A}}=A\$


First add some not gates.

\$\overline{\overline{\overline{x}y}}+\overline{\overline{x\overline{y}}}+\overline{\overline{\overline{y}z}}\$

Then De Morgan them to the maximum.

Here's the continuation in hidden format, I do encourage you to apply De Morgan's law on your own.

\$\overline{\overline{\overline{x}}+\overline{y}}+\overline{\overline{x}+\overline{\overline{y}}}+\overline{\overline{\overline{y}}+\overline{z}}\$

And after you've applied De Morgan's Law, then you might want to remove unnecessary gates. Use these two yellow boxes as a way to control that you've calculated correctly.

\$\overline{x+\overline{y}}+\overline{\overline{x}+y}+\overline{y+\overline{z}}\$