To determine the current I have to calculate the total impedance, here named \$Z_{Ges}\$, in the circuit which can be seen in the first picture. 
First I summed \$R_1 \$, \$C \$ and \$R_2 \$ as a parallel impedance \$Z_{1C2} = (Z_{R_1} || Z_C) || Z_{R_2} = (\frac{R_1 * \frac{1}{j\omega C}}{R_1 + \frac{1}{j \omega C}}) || R_2 = (\frac{R_1}{1+j \omega R_1 C})||R_2 = \frac{\frac{R_1}{1+j \omega R_1 C}R_2}{\frac{R_1}{1+j \omega R_1 C}+R_2} = ... = \frac{R_1^2 R_2 + R_1 R_2^2}{(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 C^2} - j\frac{\omega R_1^2 R_2^2 C}{(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 C^2}\$.
This leads to the simplified circuit with only \$Z_{1C2}\$, \$Z_{3}\$ and \$Z_{L}\$. Then I add this in a series and get
\$Z_{Ges} = Z_{1C2} + Z_{3} + Z_{L} = \frac{R_1^2 R_2 + R_1 R_2^2}{(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 C^2} - j\frac{\omega R_1^2 R_2^2 C}{(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 C^2} + R_3 + j\omega L = (\frac{R_1^2 R_2 + R_1 R_2^2}{(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 C^2} + R_3)+ j(\omega L - \frac{\omega R_1^2 R_2^2 C}{(R_1 + R_2)^2 + \omega^2 R_1^2 R_2^2 C^2})\$.
After inserting the respective values I get \$ Z_{ges} = 0,6 * (3+j) [\Omega]\$
But when I want to write the calculated impedance in polar form (see picture 2) I get a somehow "strange" result in the exponent, namely \$ e^{j\frac{\pi}{540}} \$. I get this as follows:
\$ 3 + j = \sqrt{10}(\cos{x} + j\sin{x}) \$ and \$ x \$ evaluates to \$ \frac{1}{3} \$. Converting this to radians I get \$ \frac{\pi}{540} \$
Are the steps, particularly where I calculated the parallel impedance \$Z_{12C}\$, correct?
