|
| 1 | +""" |
| 2 | +Supervisor Agent - Central Orchestrator for Agent Swarm Coordination |
| 3 | +""" |
| 4 | + |
| 5 | +from __future__ import annotations |
| 6 | +import asyncio |
| 7 | +from collections import deque |
| 8 | +from datetime import datetime, timedelta |
| 9 | +from typing import Dict, List, Optional, Tuple, Any |
| 10 | +import uuid |
| 11 | +import numpy as np |
| 12 | +import psutil |
| 13 | +from pydantic import BaseModel, Field, validator |
| 14 | +from .base import BaseAgent, AgentMessage, AgentID, AgentConfig, AgentRegistry |
| 15 | +from .worker import WorkerAgent, WorkerMetrics, TaskResult, TaskRequest |
| 16 | + |
| 17 | +# Custom Types |
| 18 | +SwarmState = Dict[AgentID, np.ndarray] # State vectors of all agents |
| 19 | +PolicyVector = np.ndarray # Output from RL policy network |
| 20 | + |
| 21 | +class SupervisorConfig(AgentConfig): |
| 22 | + """Extended configuration for supervisor agents""" |
| 23 | + swarm_size_limit: int = Field(1000, gt=0) |
| 24 | + heartbeat_interval: int = 30 # seconds |
| 25 | + failure_threshold: int = 3 # Consecutive failures before remediation |
| 26 | + scheduling_algorithm: str = "rl_priority" # Options: rr, priority, rl_priority |
| 27 | + resource_weights: Dict[str, float] = {"cpu": 1.0, "mem_gb": 0.5} |
| 28 | + |
| 29 | + @validator('scheduling_algorithm') |
| 30 | + def validate_algorithm(cls, v): |
| 31 | + allowed = ["rr", "priority", "rl_priority"] |
| 32 | + if v not in allowed: |
| 33 | + raise ValueError(f"Algorithm must be one of {allowed}") |
| 34 | + return v |
| 35 | + |
| 36 | +class SwarmHealthReport(BaseModel): |
| 37 | + """Global swarm health metrics""" |
| 38 | + total_agents: int |
| 39 | + active_workers: int |
| 40 | + avg_cpu_util: float |
| 41 | + avg_mem_util: float |
| 42 | + pending_tasks: int |
| 43 | + dead_agents: List[AgentID] |
| 44 | + |
| 45 | +class TaskAssignment(BaseModel): |
| 46 | + """Directive for task distribution""" |
| 47 | + task_id: str = Field(default_factory=lambda: f"task_{uuid.uuid4().hex[:8]}") |
| 48 | + worker_id: AgentID |
| 49 | + payload: Dict[str, Any] |
| 50 | + deadline: datetime |
| 51 | + priority: int = 1 |
| 52 | + |
| 53 | +class SupervisorAgent(BaseAgent): |
| 54 | + """ |
| 55 | + Central coordination agent for swarm management |
| 56 | + |
| 57 | + Key Responsibilities: |
| 58 | + - Global state maintenance |
| 59 | + - RL-driven scheduling |
| 60 | + - Fault detection & recovery |
| 61 | + - Resource optimization |
| 62 | + - Swarm autoscaling |
| 63 | + """ |
| 64 | + |
| 65 | + def __init__(self, agent_id: AgentID): |
| 66 | + super().__init__(agent_id) |
| 67 | + self.config = SupervisorConfig() |
| 68 | + self._swarm_state: SwarmState = {} |
| 69 | + self._task_queue = deque(maxlen=10000) |
| 70 | + self._failure_counts: Dict[AgentID, int] = {} |
| 71 | + self._policy_network = self._init_policy_network() |
| 72 | + self._last_heartbeat = datetime.utcnow() |
| 73 | + |
| 74 | + async def _process_message(self, message: AgentMessage) -> MessagePayload: |
| 75 | + """Handle swarm coordination messages""" |
| 76 | + if message.payload_type == "TaskResult": |
| 77 | + return await self._handle_task_result(TaskResult(**message.payload)) |
| 78 | + elif message.payload_type == "WorkerMetrics": |
| 79 | + return await self._update_swarm_state(message.sender, message.payload) |
| 80 | + return {"status": "unhandled_message_type"} |
| 81 | + |
| 82 | + async def _handle_task_result(self, result: TaskResult) -> Dict[str, Any]: |
| 83 | + """Process task completion/failure events""" |
| 84 | + if not result.success: |
| 85 | + self._failure_counts[result.worker_id] = \ |
| 86 | + self._failure_counts.get(result.worker_id, 0) + 1 |
| 87 | + await self._trigger_remediation(result.worker_id) |
| 88 | + return {"action": "acknowledged"} |
| 89 | + |
| 90 | + async def _update_swarm_state(self, agent_id: AgentID, metrics: Dict) -> Dict: |
| 91 | + """Maintain real-time swarm state matrix""" |
| 92 | + state_vector = np.array([ |
| 93 | + metrics["cpu_usage"], |
| 94 | + metrics["mem_usage_gb"], |
| 95 | + metrics["active_tasks"], |
| 96 | + metrics["queue_size"], |
| 97 | + datetime.utcnow().timestamp() |
| 98 | + ]) |
| 99 | + self._swarm_state[agent_id] = state_vector |
| 100 | + return {"status": "state_updated"} |
| 101 | + |
| 102 | + async def _execute_policy(self, state: NDArray) -> NDArray: |
| 103 | + """Generate swarm-level coordination directives""" |
| 104 | + # Convert swarm state to policy input tensor |
| 105 | + state_tensor = np.stack(list(self._swarm_state.values())) |
| 106 | + async with self._policy_lock: |
| 107 | + policy_output = self._policy_network.predict(state_tensor) |
| 108 | + return policy_output |
| 109 | + |
| 110 | + def _init_policy_network(self) -> PolicyNetwork: |
| 111 | + """Initialize RL policy model (placeholder implementation)""" |
| 112 | + class MockPolicyNetwork: |
| 113 | + def predict(self, state: np.ndarray) -> np.ndarray: |
| 114 | + return np.random.rand(state.shape[0], 5) # 5 actions per agent |
| 115 | + return MockPolicyNetwork() |
| 116 | + |
| 117 | + async def _coordinate_swarm(self) -> None: |
| 118 | + """Main coordination loop""" |
| 119 | + while self._is_running: |
| 120 | + # 1. Check swarm health |
| 121 | + health_report = self._generate_health_report() |
| 122 | + |
| 123 | + # 2. Execute RL policy |
| 124 | + policy_vector = await self._execute_policy(health_report) |
| 125 | + |
| 126 | + # 3. Dispatch tasks |
| 127 | + await self._dispatch_tasks(policy_vector) |
| 128 | + |
| 129 | + # 4. Handle autoscaling |
| 130 | + if len(self._swarm_state) < self.config.swarm_size_limit: |
| 131 | + await self._scale_swarm() |
| 132 | + |
| 133 | + # 5. Failure recovery |
| 134 | + await self._recover_failed_agents() |
| 135 | + |
| 136 | + await asyncio.sleep(1) |
| 137 | + |
| 138 | + async def _dispatch_tasks(self, policy_vector: PolicyVector) -> None: |
| 139 | + """Distribute tasks based on policy output""" |
| 140 | + for agent_id, actions in zip(self._swarm_state.keys(), policy_vector): |
| 141 | + if agent_id not in WorkerAgent.get_worker_metrics(): |
| 142 | + continue |
| 143 | + |
| 144 | + # Decode policy actions |
| 145 | + task_capacity = int(actions[0] * 10) # Max 10 tasks per dispatch |
| 146 | + for _ in range(task_capacity): |
| 147 | + if self._task_queue: |
| 148 | + task = self._task_queue.popleft() |
| 149 | + assignment = TaskAssignment( |
| 150 | + worker_id=agent_id, |
| 151 | + payload=task.payload, |
| 152 | + deadline=datetime.utcnow() + timedelta(seconds=task.timeout) |
| 153 | + ) |
| 154 | + await self._send_task_assignment(assignment) |
| 155 | + |
| 156 | + async def _send_task_assignment(self, assignment: TaskAssignment) -> None: |
| 157 | + """Direct task assignment to target worker""" |
| 158 | + try: |
| 159 | + await self._send_message( |
| 160 | + receiver=assignment.worker_id, |
| 161 | + payload_type="TaskAssignment", |
| 162 | + payload=assignment.dict() |
| 163 | + ) |
| 164 | + except AgentNetworkError as e: |
| 165 | + self._logger.error(f"Failed to assign task {assignment.task_id}: {e}") |
| 166 | + self._task_queue.append(assignment) # Requeue failed assignment |
| 167 | + |
| 168 | + async def _scale_swarm(self) -> None: |
| 169 | + """Autoscale worker agents based on load""" |
| 170 | + pending_tasks = len(self._task_queue) |
| 171 | + current_workers = len(WorkerAgent.get_worker_metrics()) |
| 172 | + |
| 173 | + if pending_tasks > current_workers * 5: # Scale-up threshold |
| 174 | + scale_count = min( |
| 175 | + (pending_tasks // 5) - current_workers, |
| 176 | + self.config.swarm_size_limit - current_workers |
| 177 | + ) |
| 178 | + for _ in range(scale_count): |
| 179 | + worker_id = f"worker-{uuid.uuid4().hex[:8]}" |
| 180 | + await self._deploy_new_worker(worker_id) |
| 181 | + |
| 182 | + async def _deploy_new_worker(self, worker_id: AgentID) -> None: |
| 183 | + """Orchestrate new worker deployment (Kubernetes integration example)""" |
| 184 | + # TODO: Implement actual deployment logic |
| 185 | + worker = WorkerAgent(worker_id) |
| 186 | + self._registry.register(worker) |
| 187 | + asyncio.create_task(worker.start()) |
| 188 | + |
| 189 | + async def _recover_failed_agents(self) -> None: |
| 190 | + """Handle agent failure recovery""" |
| 191 | + for agent_id, count in self._failure_counts.items(): |
| 192 | + if count >= self.config.failure_threshold: |
| 193 | + await self._restart_agent(agent_id) |
| 194 | + self._failure_counts[agent_id] = 0 |
| 195 | + |
| 196 | + async def _restart_agent(self, agent_id: AgentID) -> None: |
| 197 | + """Agent restart procedure""" |
| 198 | + self._logger.warning(f"Restarting agent {agent_id}") |
| 199 | + old_agent = self._registry.get(agent_id) |
| 200 | + if old_agent: |
| 201 | + await old_agent.shutdown() |
| 202 | + del self._swarm_state[agent_id] |
| 203 | + |
| 204 | + new_agent = WorkerAgent(agent_id) |
| 205 | + self._registry.register(new_agent) |
| 206 | + asyncio.create_task(new_agent.start()) |
| 207 | + |
| 208 | + def _generate_health_report(self) -> SwarmHealthReport: |
| 209 | + """Generate system-wide health metrics""" |
| 210 | + worker_metrics = WorkerAgent.get_worker_metrics() |
| 211 | + return SwarmHealthReport( |
| 212 | + total_agents=len(self._swarm_state), |
| 213 | + active_workers=len(worker_metrics), |
| 214 | + avg_cpu_util=( |
| 215 | + sum(w.cpu_usage for w in worker_metrics.values()) |
| 216 | + / len(worker_metrics) if worker_metrics else 0 |
| 217 | + ), |
| 218 | + avg_mem_util=( |
| 219 | + sum(w.mem_usage_gb for w in worker_metrics.values()) |
| 220 | + / len(worker_metrics) if worker_metrics else 0 |
| 221 | + ), |
| 222 | + pending_tasks=len(self._task_queue), |
| 223 | + dead_agents=[ |
| 224 | + aid for aid in self._swarm_state |
| 225 | + if aid not in worker_metrics |
| 226 | + ] |
| 227 | + ) |
| 228 | + |
| 229 | + async def submit_task(self, task: TaskRequest) -> str: |
| 230 | + """Public API for task submission""" |
| 231 | + self._task_queue.append(task) |
| 232 | + return task.task_id |
| 233 | + |
| 234 | + async def shutdown_swarm(self) -> None: |
| 235 | + """Graceful swarm shutdown""" |
| 236 | + for agent in self._registry.get_all_agents(): |
| 237 | + if isinstance(agent, WorkerAgent): |
| 238 | + await agent.shutdown() |
| 239 | + await super().shutdown() |
| 240 | + |
| 241 | + @classmethod |
| 242 | + def get_global_health(cls) -> SwarmHealthReport: |
| 243 | + """Get current swarm health status""" |
| 244 | + supervisors = [ |
| 245 | + agent for agent in cls._registry.values() |
| 246 | + if isinstance(agent, SupervisorAgent) |
| 247 | + ] |
| 248 | + if not supervisors: |
| 249 | + raise ValueError("No active supervisor") |
| 250 | + return supervisors[0]._generate_health_report() |
| 251 | + |
| 252 | +# Kubernetes-enhanced Supervisor |
| 253 | +class K8sSupervisor(SupervisorAgent): |
| 254 | + """Supervisor with Kubernetes cluster integration""" |
| 255 | + |
| 256 | + async def _deploy_new_worker(self, worker_id: AgentID) -> None: |
| 257 | + """Deploy workers using Kubernetes API""" |
| 258 | + from kubernetes import client, config # Requires k8s SDK |
| 259 | + |
| 260 | + # Load cluster config |
| 261 | + config.load_incluster_config() |
| 262 | + api = client.AppsV1Api() |
| 263 | + |
| 264 | + # Create new worker deployment |
| 265 | + deployment = client.V1Deployment( |
| 266 | + metadata=client.V1ObjectMeta(name=f"aelion-worker-{worker_id}"), |
| 267 | + spec=client.V1DeploymentSpec( |
| 268 | + replicas=1, |
| 269 | + template=client.V1PodTemplateSpec( |
| 270 | + spec=client.V1PodSpec( |
| 271 | + containers=[ |
| 272 | + client.V1Container( |
| 273 | + name="worker", |
| 274 | + image="aelionai/worker:latest", |
| 275 | + env=[ |
| 276 | + client.V1EnvVar( |
| 277 | + name="AGENT_ID", |
| 278 | + value=worker_id |
| 279 | + ) |
| 280 | + ] |
| 281 | + ) |
| 282 | + ] |
| 283 | + ) |
| 284 | + ) |
| 285 | + ) |
| 286 | + ) |
| 287 | + |
| 288 | + api.create_namespaced_deployment( |
| 289 | + namespace="aelion", |
| 290 | + body=deployment |
| 291 | + ) |
| 292 | + self._logger.info(f"Deployed worker {worker_id} via Kubernetes") |
| 293 | + |
| 294 | + async def _restart_agent(self, agent_id: AgentID) -> None: |
| 295 | + """Kubernetes pod restart logic""" |
| 296 | + from kubernetes import client, config |
| 297 | + |
| 298 | + config.load_incluster_config() |
| 299 | + core_api = client.CoreV1Api() |
| 300 | + |
| 301 | + pods = core_api.list_namespaced_pod( |
| 302 | + namespace="aelion", |
| 303 | + label_selector=f"agent-id={agent_id}" |
| 304 | + ) |
| 305 | + |
| 306 | + if pods.items: |
| 307 | + core_api.delete_namespaced_pod( |
| 308 | + name=pods.items[0].metadata.name, |
| 309 | + namespace="aelion" |
| 310 | + ) |
| 311 | + self._logger.info(f"Restarted K8s pod for agent {agent_id}") |
0 commit comments