A scalable AI platform that orchestrates agent swarms via reinforcement learning for autonomous business operations.
| Swarm Intelligence | Enterprise Security | Performance |
|---|---|---|
| β’ Dynamic agent discovery via CRDTs | β’ Zero-trust gRPC-MTLS | β’ 1M msg/sec per agent |
| β’ Federated learning with TFHE | β’ Hardware-bound JWT authentication | β’ <5ms E2E latency |
| β’ Contract Net Protocol (FIPA) | β’ GDPR/CCPA audit trails | β’ 99.999% uptime SLA |
| β’ Chaos-resilient consensus | β’ Quantum-safe Kyber-1024 | β’ 10x TCO reduction |
%% sazmir AI Technical Architecture Diagram graph TD subgraph Cloud_Providers AWS[AWS Region] GCP[GCP Region] Azure[Azure Region] end subgraph Control_Plane CP1[Consensus Manager] CP2[Global State Store] CP3[Federated Orchestrator] CP4[Auto-Scaler] end subgraph Data_Plane DP1[Agent Pods] DP2[Kafka Cluster] DP3[PostgreSQL HA] DP4[Neo4j Cluster] end subgraph Security_Stack SS1[SPIFFE Identity] SS2[Kyber-1024 TLS] SS3[Vault Secrets] SS4[OPA Policies] end subgraph Edge_Network EN1[5G MEC Node] EN2[IoT Gateway] EN3[Field Agent] end subgraph Observability OB1[Prometheus/Thanos] OB2[Loki/Tempo] OB3[Grafana Labs] OB4[OpenTelemetry] end %% Core Connections Cloud_Providers -->|Multi-Cloud Sync| Control_Plane Control_Plane -->|gNMI Telemetry| Data_Plane Data_Plane -->|Envoy mTLS| Security_Stack Security_Stack -->|SPIRE| Edge_Network Edge_Network -->|WireGuard| Cloud_Providers Observability -->|OTLP| Data_Plane %% classDef cloud fill:#3A4F6E,stroke:#2B3A5A; classDef control fill:#1F4788,stroke:#16325C; classDef data fill:#2E8540,stroke:#245C33; classDef security fill:#D14032,stroke:#A33126; classDef edge fill:#6E509F,stroke:#543D87; classDef obs fill:#FFC107,stroke:#D39E00; class Cloud_Providers cloud; class Control_Plane control; class Data_Plane data; class Security_Stack security; class Edge_Network edge; class Observability obs; git clone https://github.com/sazmir-ai/core.git cd core/deploy # Start minimal cluster (Agent + Redis + Observability) docker compose -f docker-compose-dev.yml up --detach # Submit sample task curl -X POST http://localhost:8080/v1/tasks \ -H "X-API-Key: DEMO_KEY" \ -d '{"protocol":"contract_net", "payload":{"task_id":"geo-sat-001"}}' # Check agent health curl http://localhost:8080/v1/health # Monitor metrics (Prometheus) open http://localhost:9090 # View real-time logs (Loki) open http://localhost:3100 - Kubernetes 1.25+ (Production) / Docker 20.10+ (Dev)
- NVIDIA GPU with CUDA 12.1 (Optional for AI workloads)
- 8 GB RAM (Min) / 64 GB RAM (Production)
helm repo add biconic https://helm.sazmir.ai helm install biconic-agent sazmir/sazmir-agent \ --namespace aelion-prod \ --set global.tls.autoCert=true \ --set autoscaler.minReplicas=10 \ --values https://config.sazmir.ai/v1/production.yaml # .env.production AELION_DEPLOY_MODE=hybrid AELION_CRYPTO_PROVIDER=kyber1024 AELION_TELEMETRY_ENDPOINT=https://telemetry.sazmir.ai/v1/ingest AELION_LICENSE_KEY=eyJhbGciOiJSUzI1NiIsInR5cCI6... # JWT-Encrypted | Parameter | Description | Default |
|---|---|---|
| swarm.quorum_size | Minimum agents for consensus | 7 |
| federation.max_latency_ms | Cross-DC latency threshold | 150 |
| telemetry.sampling_rate | Observability data sampling | 0.05 |
# Generate quantum-safe certs (Kyber-1024) openssl req -x509 -newkey kyber1024 \ -keyout key.pem -out cert.pem \ -days 365 -nodes -subj "/CN=sazmir.ai" # Example: Immutable audit logger from aelion.audit import QuantumAuditLogger qlogger = QuantumAuditLogger( ledger_type="blockchain", post_quantum_sig=True ) qlogger.log_operation( user="admin@sazmir.ai", action="agent_scale_up", params={"replicas": 100} ) | Scenario | vCPUs | Throughput | Latency |
|---|---|---|---|
| Contract Net (100 agents) | 16 | 12K tasks/sec | 8ms Β±1.2 |
| Federated Learning (10 nodes) | 64 | 3TB/hr | 92ms Β±5.6 |
| Disaster Recovery Failover | 128 | N/A | 1.3s P99 |