|
| 1 | + |
| 2 | +//---------------------------------------- |
| 3 | +// - Question: Given a matrix and start and ending positions, help a robot navigate through the matrix and print all possible paths. |
| 4 | +// The matrix might have obstacles in which case the current path must be abandoned and a new path (if available) must be searched. |
| 5 | +// At every cell of the matrix, the robot can move down one step or move right one step or move diagonally down right one step |
| 6 | + |
| 7 | +#include <iostream> |
| 8 | +#include <vector> |
| 9 | +#include <iterator> // ostream_iterator |
| 10 | +using namespace std; |
| 11 | + |
| 12 | +// macro to define limits for the input matrix |
| 13 | +#define MAX_X 4 |
| 14 | +#define MAX_Y 9 |
| 15 | + |
| 16 | +// coordinates of the robot destination cell |
| 17 | +#define END_X 3 |
| 18 | +#define END_Y 8 |
| 19 | + |
| 20 | +struct Point |
| 21 | +{ |
| 22 | + int x; |
| 23 | + int y; |
| 24 | +}; |
| 25 | + |
| 26 | +bool isValid(int current_x, int current_y) |
| 27 | +{ |
| 28 | + return current_x >= 0 && current_x < MAX_X && current_y >= 0 && current_y < MAX_Y; |
| 29 | +} |
| 30 | + |
| 31 | +ostream& operator<<(ostream& output, const Point& p) |
| 32 | +{ |
| 33 | + output << "(" << p.x << "," << p.y << ")"; |
| 34 | + return output; |
| 35 | +} |
| 36 | + |
| 37 | +void printCurrentPath(const vector<Point>& currentPath) |
| 38 | +{ |
| 39 | + copy(currentPath.begin(), currentPath.end(), ostream_iterator<Point>(cout, " ")); |
| 40 | + cout << endl; |
| 41 | +} |
| 42 | + |
| 43 | +Point neighbors[]{{1, 1}, {1, 0}, {0, 1}}; |
| 44 | + |
| 45 | +// recursive helper function that implements backtracking |
| 46 | +void printPathsHelper( |
| 47 | + int M[MAX_X][MAX_Y], |
| 48 | + int current_x, |
| 49 | + int current_y, |
| 50 | + vector<Point> & currentPath) |
| 51 | +{ |
| 52 | + if (!(isValid(current_x, current_y) && M[current_x][current_y] == 0)) |
| 53 | + { |
| 54 | + return; |
| 55 | + } |
| 56 | + |
| 57 | + currentPath.push_back(Point{current_x, current_y}); |
| 58 | + |
| 59 | + if (current_x == END_X && current_y == END_Y) |
| 60 | + { |
| 61 | + printCurrentPath(currentPath); |
| 62 | + } |
| 63 | + else |
| 64 | + { |
| 65 | + M[current_x][current_y] = 1; |
| 66 | + for (auto neighbor : neighbors) |
| 67 | + { |
| 68 | + int next_x = current_x + neighbor.x; |
| 69 | + int next_y = current_y + neighbor.y; |
| 70 | + printPathsHelper(M, next_x, next_y, currentPath); |
| 71 | + } |
| 72 | + M[current_x][current_y] = 0; |
| 73 | + } |
| 74 | + |
| 75 | + currentPath.pop_back(); |
| 76 | +} |
| 77 | + |
| 78 | +// driver function for the solution |
| 79 | +void printPaths( |
| 80 | + int M[MAX_X][MAX_Y], |
| 81 | + int start_x, |
| 82 | + int start_y) |
| 83 | +{ |
| 84 | + vector<Point> currentPath; |
| 85 | + printPathsHelper(M, start_x, start_y, currentPath); |
| 86 | +} |
| 87 | + |
| 88 | +int main(int argc, char *argv[]) |
| 89 | +{ |
| 90 | + int start_x = 0, start_y = 0; |
| 91 | + int M[MAX_X][MAX_Y]= |
| 92 | + { |
| 93 | + // 0 means the position/ path is available for exploring. |
| 94 | + // 1 means it is a wall/ obstacle and we cannot proceed further. |
| 95 | + {0,0,0,1,1,1,0,0,0}, |
| 96 | + {1,1,0,0,0,0,0,0,0}, |
| 97 | + {1,0,1,0,0,1,0,1,0}, |
| 98 | + {0,0,1,1,0,1,1,1,0} |
| 99 | + }; |
| 100 | + |
| 101 | + printPaths(M, start_x, start_y); |
| 102 | + |
| 103 | + return 0; |
| 104 | +} |
| 105 | + |
| 106 | +/* |
| 107 | +Output: |
| 108 | +(0,0) (0,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (2,8) (3,8) |
| 109 | +(0,0) (0,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,8) (3,8) |
| 110 | +(0,0) (0,1) (0,2) (1,3) (1,4) (1,5) (1,6) (1,7) (2,8) (3,8) |
| 111 | +(0,0) (0,1) (0,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,8) (3,8) |
| 112 | +(0,0) (0,1) (0,2) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (2,8) (3,8) |
| 113 | +(0,0) (0,1) (0,2) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,8) (3,8) |
| 114 | +
|
| 115 | +*/ |
| 116 | + |
0 commit comments