You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#### 1. Overview [[Paper]](https://arxiv.org/pdf/1704.02470.pdf)[[Project webpage]](http://people.ee.ethz.ch/~ihnatova/)[[Enhancing RAW photos]](https://github.com/aiff22/PyNET)[[Rendering Bokeh Effect]](https://github.com/aiff22/PyNET-Bokeh)
9
+
#### 1. Overview [[Paper]](https://arxiv.org/pdf/1704.02470.pdf)[[Project webpage]](https://aiff22.github.io/)[[Enhancing RAW photos]](https://github.com/aiff22/PyNET)[[Rendering Bokeh Effect]](https://github.com/aiff22/PyNET-Bokeh)
10
10
11
11
The provided code implements the paper that presents an end-to-end deep learning approach for translating ordinary photos from smartphones into DSLR-quality images. The learned model can be applied to photos of arbitrary resolution, while the methodology itself is generalized to
12
-
any type of digital camera. More visual results can be found [here](http://people.ee.ethz.ch/~ihnatova/#demo).
12
+
any type of digital camera. More visual results can be found [here](https://aiff22.github.io/#demo).
13
13
14
14
15
15
#### 2. Prerequisites
@@ -21,8 +21,8 @@ any type of digital camera. More visual results can be found [here](http://peopl
21
21
22
22
#### 3. First steps
23
23
24
-
- Download the pre-trained [VGG-19 model](https://polybox.ethz.ch/index.php/s/7z5bHNg5r5a0g7k) <sup>[Mirror](https://drive.google.com/file/d/0BwOLOmqkYj-jMGRwaUR2UjhSNDQ/view?usp=sharing&resourcekey=0-Ff-0HUQsoKJxZ84trhsHpA)</sup> and put it into `vgg_pretrained/` folder
25
-
- Download [DPED dataset](http://people.ee.ethz.ch/~ihnatova/#dataset) (patches for CNN training) and extract it into `dped/` folder.
24
+
- Download the pre-trained [VGG-19 model](https://download.ai-benchmark.com/s/CCDiWM2sE25x2dW/download/imagenet-vgg-verydeep-19.mat) and put it into `vgg_pretrained/` folder
25
+
- Download [DPED dataset](https://aiff22.github.io/#dataset) (patches for CNN training) and extract it into `dped/` folder.
26
26
<sub>This folder should contain three subolders: `sony/`, `iphone/` and `blackberry/`</sub>
0 commit comments