Skip to content

Commit d1fbb62

Browse files
authored
Updated project links
1 parent ebb0131 commit d1fbb62

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,14 +2,14 @@
22

33
<br/>
44

5-
<img src="http://people.ee.ethz.ch/~ihnatova/assets/img/teaser_git.jpg"/>
5+
<img src="https://aiff22.github.io/assets/img/teaser_git.jpg"/>
66

77
<br/>
88

9-
#### 1. Overview [[Paper]](https://arxiv.org/pdf/1704.02470.pdf) [[Project webpage]](http://people.ee.ethz.ch/~ihnatova/) [[Enhancing RAW photos]](https://github.com/aiff22/PyNET) [[Rendering Bokeh Effect]](https://github.com/aiff22/PyNET-Bokeh)
9+
#### 1. Overview [[Paper]](https://arxiv.org/pdf/1704.02470.pdf) [[Project webpage]](https://aiff22.github.io/) [[Enhancing RAW photos]](https://github.com/aiff22/PyNET) [[Rendering Bokeh Effect]](https://github.com/aiff22/PyNET-Bokeh)
1010

1111
The provided code implements the paper that presents an end-to-end deep learning approach for translating ordinary photos from smartphones into DSLR-quality images. The learned model can be applied to photos of arbitrary resolution, while the methodology itself is generalized to
12-
any type of digital camera. More visual results can be found [here](http://people.ee.ethz.ch/~ihnatova/#demo).
12+
any type of digital camera. More visual results can be found [here](https://aiff22.github.io/#demo).
1313

1414

1515
#### 2. Prerequisites
@@ -21,8 +21,8 @@ any type of digital camera. More visual results can be found [here](http://peopl
2121

2222
#### 3. First steps
2323

24-
- Download the pre-trained [VGG-19 model](https://polybox.ethz.ch/index.php/s/7z5bHNg5r5a0g7k) <sup>[Mirror](https://drive.google.com/file/d/0BwOLOmqkYj-jMGRwaUR2UjhSNDQ/view?usp=sharing&resourcekey=0-Ff-0HUQsoKJxZ84trhsHpA)</sup> and put it into `vgg_pretrained/` folder
25-
- Download [DPED dataset](http://people.ee.ethz.ch/~ihnatova/#dataset) (patches for CNN training) and extract it into `dped/` folder.
24+
- Download the pre-trained [VGG-19 model](https://download.ai-benchmark.com/s/CCDiWM2sE25x2dW/download/imagenet-vgg-verydeep-19.mat) and put it into `vgg_pretrained/` folder
25+
- Download [DPED dataset](https://aiff22.github.io/#dataset) (patches for CNN training) and extract it into `dped/` folder.
2626
<sub>This folder should contain three subolders: `sony/`, `iphone/` and `blackberry/`</sub>
2727

2828
<br/>

0 commit comments

Comments
 (0)