Skip to content

efficientnetv2-bn parameters for progressive learning #1203

@bahejl

Description

@bahejl

I would like to train one of the efficientnetv2-bn networks on a custom dataset, and I noticed the following in effnetv2_configs.py line 202:

# For fair comparison to EfficientNetV1, using the same scaling and autoaug. 'efficientnetv2-b0': # 78.7% @ 7M params (v2_base_block, 1.0, 1.0, 192, 224, 0.2, 0, 0, 'effnetv1_autoaug'), 'efficientnetv2-b1': # 79.8% @ 8M params (v2_base_block, 1.0, 1.1, 192, 240, 0.2, 0, 0, 'effnetv1_autoaug'), 'efficientnetv2-b2': # 80.5% @ 10M params (v2_base_block, 1.1, 1.2, 208, 260, 0.3, 0, 0, 'effnetv1_autoaug'), 'efficientnetv2-b3': # 82.1% @ 14M params (v2_base_block, 1.2, 1.4, 240, 300, 0.3, 0, 0, 'effnetv1_autoaug'), 

I would really like to use the progressive learning mentioned in the paper instead of the augmentation used in V1. Would I just change the aug field to 'randaug' or are additional changes needed?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions