2020app = Flask (__name__ )
2121
2222# Model saved with Keras model.save()
23- MODEL_PATH = 'models/densenet121 .h5'
23+ MODEL_PATH = 'models/your_model .h5'
2424
25- # Load model
26- model = load_model (MODEL_PATH )
27- model ._make_predict_function () # Necessary
28- print ('Model loaded.' )
25+ # Load your trained model
26+ # model = load_model(MODEL_PATH)
27+ # model._make_predict_function() # Necessary
28+ # print('Model loaded. Start serving.. .')
2929
3030# You can also use pretrained model from Keras
31- # https://keras.io/applications/
32- # from keras.applications.resnet50 import ResNet50
33- # model = ResNet50(weights='imagenet')
31+ # Check https://keras.io/applications/
32+ from keras .applications .resnet50 import ResNet50
33+ model = ResNet50 (weights = 'imagenet' )
34+ print ('Model loaded. Check http://127.0.0.1:5000/' )
3435
3536
3637def model_predict (img_path , model ):
@@ -42,8 +43,8 @@ def model_predict(img_path, model):
4243 x = np .expand_dims (x , axis = 0 )
4344
4445 # Be careful how your trained model deals with the input
45- # otherwise, it won't make correct prediction
46- x = preprocess_input (x , mode = 'torch ' )
46+ # otherwise, it won't make correct prediction!
47+ x = preprocess_input (x , mode = 'caffe ' )
4748
4849 preds = model .predict (x )
4950 return preds
@@ -71,7 +72,7 @@ def upload():
7172 preds = model_predict (file_path , model )
7273
7374 # Process your result for human
74- # pre_class = preds.argmax(axis=-1) # Simple argmax
75+ # pred_class = preds.argmax(axis=-1) # Simple argmax
7576 pred_class = decode_predictions (preds , top = 1 ) # ImageNet Decode
7677 result = str (pred_class [0 ][0 ][1 ]) # Convert to string
7778 return result
0 commit comments