|
| 1 | + |
| 2 | +# ISC License |
| 3 | +# |
| 4 | +# Copyright (c) 2024, Autonomous Vehicle Systems Lab, University of Colorado at Boulder |
| 5 | +# |
| 6 | +# Permission to use, copy, modify, and/or distribute this software for any |
| 7 | +# purpose with or without fee is hereby granted, provided that the above |
| 8 | +# copyright notice and this permission notice appear in all copies. |
| 9 | +# |
| 10 | +# THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 11 | +# WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 12 | +# MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 13 | +# ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 14 | +# WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 15 | +# ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 16 | +# OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 17 | +# |
| 18 | + |
| 19 | +r""" |
| 20 | +Overview |
| 21 | +-------- |
| 22 | +
|
| 23 | +This script sets up a 3-DOF spacecraft that is operating near-Halo orbit at L2 Earth-Moon Lagrange points. The purpose |
| 24 | +is to illustrate how to set up the spacecraft's initial conditions to create a near-Halo orbit and convert the barycenter focused |
| 25 | +non-dimensional ICs to earth-centered inertial frame components. |
| 26 | +
|
| 27 | +The script is found in the folder ``basilisk/examples`` and executed by using:: |
| 28 | +
|
| 29 | + python3 scenarioHaloOrbit.py |
| 30 | +
|
| 31 | +For this simulation, the Earth is assumed stationary, and the Moon's trajectory is generated using SPICE. Refer to |
| 32 | +:ref:`scenarioOrbitMultiBody` to learn how to create multiple gravity bodies and read a SPICE trajectory. |
| 33 | +
|
| 34 | +When the simulation completes, three plots are shown. The first plot shows the orbits of the Moon and spacecraft in |
| 35 | +the Earth-centered inertial frame. The second and third plots show the motion of the spacecraft in a frame rotating |
| 36 | +with the Moon. In the second plot, the y-axis represents the Moon's velocity direction, and in the third plot, the |
| 37 | +y-axis represents the cross product of the Moon's position vector and velocity vector. |
| 38 | +
|
| 39 | +Illustration of Simulation Results |
| 40 | +---------------------------------- |
| 41 | +
|
| 42 | +The following images illustrate the simulation run results with the following settings: |
| 43 | +
|
| 44 | +:: |
| 45 | +
|
| 46 | + showPlots = True |
| 47 | +
|
| 48 | +.. image:: /_images/Scenarios/scenarioHaloOrbitFig1.svg |
| 49 | + :align: center |
| 50 | +
|
| 51 | +.. image:: /_images/Scenarios/scenarioHaloOrbitFig2.svg |
| 52 | + :align: center |
| 53 | +
|
| 54 | +.. image:: /_images/Scenarios/scenarioHaloOrbitFig3.svg |
| 55 | + :align: center |
| 56 | +
|
| 57 | +
|
| 58 | +""" |
| 59 | + |
| 60 | +# |
| 61 | +# Basilisk Scenario Script and Integrated Test |
| 62 | +# |
| 63 | +# Purpose: This scenario illustrates the near-Halo orbit of a spacecraft. |
| 64 | +# Author: Yumeka Nagano |
| 65 | +# Creation Date: Feb. 12, 2024 |
| 66 | +# |
| 67 | + |
| 68 | +import os |
| 69 | +from datetime import datetime |
| 70 | + |
| 71 | +import matplotlib.pyplot as plt |
| 72 | +import numpy as np |
| 73 | +from Basilisk import __path__ |
| 74 | +from Basilisk.simulation import spacecraft |
| 75 | +from Basilisk.topLevelModules import pyswice |
| 76 | +from Basilisk.utilities import (SimulationBaseClass, macros, orbitalMotion, |
| 77 | + simIncludeGravBody, unitTestSupport, vizSupport) |
| 78 | +from Basilisk.utilities.pyswice_spk_utilities import spkRead |
| 79 | + |
| 80 | +bskPath = __path__[0] |
| 81 | +fileName = os.path.basename(os.path.splitext(__file__)[0]) |
| 82 | + |
| 83 | +def run(showPlots=True): |
| 84 | + """ |
| 85 | + Args: |
| 86 | + showPlots (bool): Determines if the script should display plots |
| 87 | + """ |
| 88 | + |
| 89 | + # Create simulation variable names |
| 90 | + simTaskName = "dynTask" |
| 91 | + simProcessName = "dynProcess" |
| 92 | + |
| 93 | + # Create a sim module as an empty container |
| 94 | + scSim = SimulationBaseClass.SimBaseClass() |
| 95 | + scSim.SetProgressBar(True) |
| 96 | + |
| 97 | + # Create the simulation process (dynamics) |
| 98 | + dynProcess = scSim.CreateNewProcess(simProcessName) |
| 99 | + |
| 100 | + # Add the dynamics task to the dynamics process and specify the integration update time |
| 101 | + timestep = 300 |
| 102 | + simulationTimeStep = macros.sec2nano(timestep) |
| 103 | + dynProcess.addTask(scSim.CreateNewTask(simTaskName, simulationTimeStep)) |
| 104 | + |
| 105 | + # Setup the spacecraft object |
| 106 | + scObject = spacecraft.Spacecraft() |
| 107 | + scObject.ModelTag = "HaloSat" |
| 108 | + |
| 109 | + # Add spacecraft object to the simulation process |
| 110 | + # Make this model a lower priority than the SPICE object task |
| 111 | + scSim.AddModelToTask(simTaskName, scObject, 0) |
| 112 | + |
| 113 | + # Setup gravity factory and gravity bodies |
| 114 | + # Include bodies as a list of SPICE names |
| 115 | + gravFactory = simIncludeGravBody.gravBodyFactory() |
| 116 | + gravBodies = gravFactory.createBodies('moon', 'earth') |
| 117 | + gravBodies['earth'].isCentralBody = True |
| 118 | + |
| 119 | + # Add gravity bodies to the spacecraft dynamics |
| 120 | + gravFactory.addBodiesTo(scObject) |
| 121 | + |
| 122 | + # Create default SPICE module, specify start date/time. |
| 123 | + timeInitString = "2022 August 31 15:00:00.0" |
| 124 | + bsk_path = __path__[0] |
| 125 | + spiceObject = gravFactory.createSpiceInterface(bsk_path + "/supportData/EphemerisData/", time=timeInitString, |
| 126 | + epochInMsg=True) |
| 127 | + spiceObject.zeroBase = 'earth' |
| 128 | + |
| 129 | + # Add SPICE object to the simulation task list |
| 130 | + scSim.AddModelToTask(simTaskName, spiceObject, 1) |
| 131 | + |
| 132 | + # Import SPICE ephemeris data into the python environment |
| 133 | + pyswice.furnsh_c(spiceObject.SPICEDataPath + 'de430.bsp') # solar system bodies |
| 134 | + pyswice.furnsh_c(spiceObject.SPICEDataPath + 'naif0012.tls') # leap second file |
| 135 | + pyswice.furnsh_c(spiceObject.SPICEDataPath + 'de-403-masses.tpc') # solar system masses |
| 136 | + pyswice.furnsh_c(spiceObject.SPICEDataPath + 'pck00010.tpc') # generic Planetary Constants Kernel |
| 137 | + |
| 138 | + # Set spacecraft ICs |
| 139 | + # Get initial moon data |
| 140 | + moonSpiceName = 'moon' |
| 141 | + moonInitialState = 1000 * spkRead(moonSpiceName, timeInitString, 'J2000', 'earth') |
| 142 | + moon_rN_init = moonInitialState[0:3] |
| 143 | + moon_vN_init = moonInitialState[3:6] |
| 144 | + moon = gravBodies['moon'] |
| 145 | + earth = gravBodies['earth'] |
| 146 | + oe = orbitalMotion.rv2elem(earth.mu, moon_rN_init, moon_vN_init) |
| 147 | + moon_a = oe.a |
| 148 | + |
| 149 | + # Direction Cosine Matrix (DCM) from earth centered inertial frame to earth-moon rotation frame |
| 150 | + DCMInit = np.array([moon_rN_init/np.linalg.norm(moon_rN_init),moon_vN_init/np.linalg.norm(moon_vN_init), |
| 151 | + np.cross(moon_rN_init, moon_vN_init) / np.linalg.norm(np.cross(moon_rN_init, moon_vN_init))]) |
| 152 | + |
| 153 | + # Set up non-dimensional parameters |
| 154 | + T_ND = np.sqrt(moon_a ** 3 / (earth.mu + moon.mu)) # non-dimensional time for one second |
| 155 | + mu_ND = moon.mu/(earth.mu + moon.mu) # non-dimensional mass |
| 156 | + |
| 157 | + # Set up initial conditions for the spacecraft |
| 158 | + x0 = 1.182212 * moon_a + moon_a * mu_ND |
| 159 | + z0 = 0.049 * moon_a |
| 160 | + dy0 = -0.167 * moon_a / T_ND |
| 161 | + X0 = np.array([[x0], [0], [z0]]) |
| 162 | + dX0 = np.array([[0], [np.linalg.norm(moon_vN_init) + dy0], [0]]) |
| 163 | + |
| 164 | + rN = np.dot(np.transpose(DCMInit), X0) |
| 165 | + vN = np.dot(np.transpose(DCMInit), dX0) |
| 166 | + |
| 167 | + scObject.hub.r_CN_NInit = rN |
| 168 | + scObject.hub.v_CN_NInit = vN |
| 169 | + |
| 170 | + # Set simulation time |
| 171 | + simulationTime = macros.day2nano(17.5) |
| 172 | + |
| 173 | + # Setup data logging |
| 174 | + numDataPoints = 1000 |
| 175 | + samplingTime = unitTestSupport.samplingTime(simulationTime, simulationTimeStep, numDataPoints) |
| 176 | + |
| 177 | + # Setup spacecraft data recorder |
| 178 | + scDataRec = scObject.scStateOutMsg.recorder(samplingTime) |
| 179 | + MoonDataRec = spiceObject.planetStateOutMsgs[0].recorder(samplingTime) |
| 180 | + scSim.AddModelToTask(simTaskName, scDataRec) |
| 181 | + scSim.AddModelToTask(simTaskName, MoonDataRec) |
| 182 | + |
| 183 | + viz = vizSupport.enableUnityVisualization(scSim, simTaskName, scObject, |
| 184 | + # saveFile=__file__ |
| 185 | + ) |
| 186 | + # Initialize simulation |
| 187 | + scSim.InitializeSimulation() |
| 188 | + |
| 189 | + # Execute simulation |
| 190 | + scSim.ConfigureStopTime(simulationTime) |
| 191 | + scSim.ExecuteSimulation() |
| 192 | + |
| 193 | + # Retrieve logged data |
| 194 | + posData = scDataRec.r_BN_N |
| 195 | + velData = scDataRec.v_BN_N |
| 196 | + timeData = scDataRec.times() |
| 197 | + moonPos = MoonDataRec.PositionVector |
| 198 | + moonVel = MoonDataRec.VelocityVector |
| 199 | + |
| 200 | + # Plot results |
| 201 | + np.set_printoptions(precision=16) |
| 202 | + plt.close("all") |
| 203 | + figureList = {} |
| 204 | + b = oe.a * np.sqrt(1 - oe.e * oe.e) |
| 205 | + |
| 206 | + # First plot: Draw orbit in inertial frame |
| 207 | + fig = plt.figure(1, figsize=np.array((1.0, b / oe.a)) * 4.75, dpi=100) |
| 208 | + plt.axis(np.array([-oe.rApoap, oe.rPeriap, -b, b]) / 1000 * 1.25) |
| 209 | + ax = fig.gca() |
| 210 | + ax.ticklabel_format(style='scientific', scilimits=[-5, 3]) |
| 211 | + |
| 212 | + # Draw 'cartoon' Earth |
| 213 | + ax.add_artist(plt.Circle((0, 0), 0.2e5, color='b')) |
| 214 | + |
| 215 | + # Plot spacecraft orbit data |
| 216 | + rDataSpacecraft = [] |
| 217 | + fDataSpacecraft = [] |
| 218 | + for ii in range(len(posData)): |
| 219 | + oeDataSpacecraft = orbitalMotion.rv2elem(earth.mu, posData[ii], velData[ii]) |
| 220 | + rDataSpacecraft.append(oeDataSpacecraft.rmag) |
| 221 | + fDataSpacecraft.append(oeDataSpacecraft.f + oeDataSpacecraft.omega - oe.omega) |
| 222 | + plt.plot(rDataSpacecraft * np.cos(fDataSpacecraft) / 1000, rDataSpacecraft * np.sin(fDataSpacecraft) / 1000, |
| 223 | + color='g', linewidth=3.0, label='Spacecraft') |
| 224 | + |
| 225 | + # Plot moon orbit data |
| 226 | + rDataMoon = [] |
| 227 | + fDataMoon = [] |
| 228 | + for ii in range(len(timeData)): |
| 229 | + oeDataMoon = orbitalMotion.rv2elem(earth.mu, moonPos[ii], moonVel[ii]) |
| 230 | + rDataMoon.append(oeDataMoon.rmag) |
| 231 | + fDataMoon.append(oeDataMoon.f + oeDataMoon.omega - oe.omega) |
| 232 | + plt.plot(rDataMoon * np.cos(fDataMoon) / 1000, rDataMoon * np.sin(fDataMoon) / 1000, color='0.5', |
| 233 | + linewidth=3.0, label='Moon') |
| 234 | + |
| 235 | + plt.xlabel(r'$i_e$ Coord. [km]') |
| 236 | + plt.ylabel(r'$i_p$ Coord. [km]') |
| 237 | + plt.grid() |
| 238 | + plt.legend() |
| 239 | + pltName = fileName + "Fig1" |
| 240 | + figureList[pltName] = plt.figure(1) |
| 241 | + |
| 242 | + # Second plot: Draw orbit in frame rotating with the Moon (the center is L2 point) |
| 243 | + # x axis is moon position vector direction and y axis is moon velocity vector direction |
| 244 | + fig = plt.figure(2, figsize=np.array((1.0, b / oe.a)) * 4.75, dpi=100) |
| 245 | + plt.axis(np.array([-1e5, 5e5, -3e5, 3e5]) * 1.25) |
| 246 | + ax = fig.gca() |
| 247 | + ax.ticklabel_format(style='scientific', scilimits=[-5, 3]) |
| 248 | + |
| 249 | + # Draw 'cartoon' Earth |
| 250 | + ax.add_artist(plt.Circle((0, 0), 0.2e5, color='b')) |
| 251 | + |
| 252 | + # Plot spacecraft orbit data |
| 253 | + rSpacecraft = np.zeros((len(posData), 3)) |
| 254 | + |
| 255 | + for ii in range(len(posData)): |
| 256 | + # Get Moon position and velocity |
| 257 | + moon_rN = moonPos[ii] |
| 258 | + moon_vN = moonVel[ii] |
| 259 | + |
| 260 | + # Direction Cosine Matrix (DCM) from earth centered inertial frame to earth-moon rotation frame |
| 261 | + rSpacecraftMag = np.linalg.norm(posData[ii]) |
| 262 | + rMoonMag = np.linalg.norm(moon_rN) |
| 263 | + DCM = [moon_rN / rMoonMag, moon_vN / np.linalg.norm(moon_vN), |
| 264 | + np.cross(moon_rN, moon_vN) / np.linalg.norm(np.cross(moon_rN, moon_vN))] |
| 265 | + |
| 266 | + # Spacecraft position in rotating frame |
| 267 | + rSpacecraft[ii,:] = np.dot(DCM, posData[ii]) |
| 268 | + |
| 269 | + plt.plot(rSpacecraft[:,0] / 1000, rSpacecraft[:,1] / 1000, |
| 270 | + color='g', linewidth=3.0, label='Spacecraft') |
| 271 | + |
| 272 | + plt.xlabel('Earth-Moon axis [km]') |
| 273 | + plt.ylabel('Moon Velocity axis [km]') |
| 274 | + plt.grid() |
| 275 | + plt.legend() |
| 276 | + pltName = fileName + "Fig2" |
| 277 | + figureList[pltName] = plt.figure(2) |
| 278 | + |
| 279 | + # Third plot: Draw orbit in frame rotating with the Moon (the center is L2 point) |
| 280 | + # x axis is moon position vector direction and y axis is the cross product direction of the moon position vector and |
| 281 | + # velocity vector |
| 282 | + fig = plt.figure(3, figsize=np.array((1.0, b / oe.a)) * 4.75, dpi=100) |
| 283 | + plt.axis(np.array([-1e5, 5e5, -3e5, 3e5]) * 1.25) |
| 284 | + ax = fig.gca() |
| 285 | + ax.ticklabel_format(style='scientific', scilimits=[-5, 3]) |
| 286 | + |
| 287 | + # Draw 'cartoon' Earth |
| 288 | + ax.add_artist(plt.Circle((0, 0), 0.2e5, color='b')) |
| 289 | + |
| 290 | + plt.plot(rSpacecraft[:, 0] / 1000, rSpacecraft[:, 2] / 1000, |
| 291 | + color='g', linewidth=3.0, label='Spacecraft') |
| 292 | + |
| 293 | + plt.xlabel('Earth-Moon axis [km]') |
| 294 | + plt.ylabel('Earth-Moon perpendicular axis [km]') |
| 295 | + plt.grid() |
| 296 | + plt.legend() |
| 297 | + pltName = fileName + "Fig3" |
| 298 | + figureList[pltName] = plt.figure(3) |
| 299 | + |
| 300 | + if showPlots: |
| 301 | + plt.show() |
| 302 | + |
| 303 | + plt.close("all") |
| 304 | + |
| 305 | + # Unload spice libraries |
| 306 | + gravFactory.unloadSpiceKernels() |
| 307 | + pyswice.unload_c(spiceObject.SPICEDataPath + 'de430.bsp') # solar system bodies |
| 308 | + pyswice.unload_c(spiceObject.SPICEDataPath + 'naif0012.tls') # leap second file |
| 309 | + pyswice.unload_c(spiceObject.SPICEDataPath + 'de-403-masses.tpc') # solar system masses |
| 310 | + pyswice.unload_c(spiceObject.SPICEDataPath + 'pck00010.tpc') # generic Planetary Constants Kernel |
| 311 | + |
| 312 | + return figureList |
| 313 | + |
| 314 | + |
| 315 | +if __name__ == "__main__": |
| 316 | + run( |
| 317 | + True # Show plots |
| 318 | + ) |
| 319 | + |
| 320 | + |
0 commit comments