Skip to content

"A neural network to rule them all, a neural network to find them, a neural network to bring them all and verify if is you !!" (Face recognition tool)

License

Notifications You must be signed in to change notification settings

alessiosavi/PyRecognizer

Repository files navigation

PyRecognizer

A simple face recognition engine

Python applicationLicense Version Code size Repo size Issue open Issue closedDeepSource

Video guide for train/predict

https://youtu.be/Tctui-KzPaM

Model tuned for some celebrities

The following list contains the name of the celebrity and the number of photos used for training, ordered by the number of photos

Celebrites list
George_W_Bush 530 Colin_Powell 236 Tony_Blair 144 Donald_Rumsfeld 121 Gerhard_Schroeder 109 Ariel_Sharon 77 Hugo_Chavez 71 Junichiro_Koizumi 60 Jean_Chretien 55 John_Ashcroft 53 Serena_Williams	52 Jacques_Chirac 52 Vladimir_Putin 49 Luiz_Inacio_Lula_da_Silva	48 Gloria_Macapagal_Arroyo 44 Jennifer_Capriati	42 Arnold_Schwarzenegger 42 Lleyton_Hewitt	41 Laura_Bush	41 Hans_Blix 39 Alejandro_Toledo	39 Nestor_Kirchner 37 Andre_Agassi 36 Alvaro_Uribe 35 Tom_Ridge 33 Silvio_Berlusconi 33 Megawati_Sukarnoputri 33 Vicente_Fox 32 Roh_Moo-hyun 32 Kofi_Annan 32 John_Negroponte 31 David_Beckham 31 Recep_Tayyip_Erdogan 30 Guillermo_Coria 30 Mahmoud_Abbas	29 Bill_Clinton 29 Juan_Carlos_Ferrero 28 Jack_Straw	28 Ricardo_Lagos 27 Rudolph_Giuliani 26 Gray_Davis 26 Tom_Daschle	25 Winona_Ryder	24 Jeremy_Greenstock 24 Atal_Bihari_Vajpayee 24 Tiger_Woods	23 Saddam_Hussein 23 Jose_Maria_Aznar	23 Pete_Sampras 22 Naomi_Watts	22 Lindsay_Davenport 22 Hamid_Karzai	22 George_Robertson 22 Jennifer_Lopez	21 Jennifer_Aniston	21 Carlos_Menem	21 Amelie_Mauresmo	21 Paul_Bremer	20 Michael_Bloomberg	20 Jiang_Zemin	20 Igor_Ivanov	20 Angelina_Jolie	20 Tim_Henman	19 Nicole_Kidman	19 Julianne_Moore	19 Joschka_Fischer	19 John_Howard	19 Carlos_Moya	19 Abdullah_Gul	19 Richard_Myers	18 Pervez_Musharraf	18 Michael_Schumacher	18 Lance_Armstrong	18 Fidel_Castro	18 Venus_Williams	17 Spencer_Abraham	17 Renee_Zellweger	17 John_Snow	17 John_Kerry	17 John_Bolton 17 Jean_Charest 17 Bill_Gates 17 Trent_Lott	16 Tommy_Franks 16 Halle_Berry	16 Taha_Yassin_Ramadan 15 Pierce_Brosnan	15 Norah_Jones 15 Nancy_Pelosi	15 Mohammed_Al-Douri	15 Meryl_Streep	15 Julie_Gerberding	15 Hu_Jintao	15 Dominique_de_Villepin	15 Bill_Simon	15 Andy_Roddick	15 Yoriko_Kawaguchi	14 Roger_Federer	14 Mahathir_Mohamad	14 Kim_Clijsters	14 James_Blake	14 Hillary_Clinton	14 Eduardo_Duhalde	14 Dick_Cheney	14 David_Nalbandian	14 Britney_Spears	14 Wen_Jiabao	13 Salma_Hayek	13 Queen_Elizabeth_II	13 Lucio_Gutierrez	13 Joe_Lieberman	13 Jackie_Chan	13 Gordon_Brown	13 George_HW_Bush	13 Edmund_Stoiber	13 Charles_Moose	13 Ari_Fleischer	13 Rubens_Barrichello	12 Michael_Jackson	12 Keanu_Reeves	12 Jennifer_Garner	12 Jeb_Bush	12 Howard_Dean	12 Harrison_Ford	12 Gonzalo_Sanchez_de_Lozada	12 Anna_Kournikova	12 Adrien_Brody	12 Tang_Jiaxuan	11 Sergio_Vieira_De_Mello	11 Sergey_Lavrov	11 Richard_Gephardt	11 Paul_Burrell	11 Nicanor_Duarte_Frutos	11 Mike_Weir	11 Mark_Philippoussis	11 Kim_Ryong-sung	11 John_Paul_II	11 John_Allen_Muhammad	11 Jiri_Novak	11 James_Kelly	11 Condoleezza_Rice	11 Catherine_Zeta-Jones	11 Ann_Veneman	11 Walter_Mondale	10 Tommy_Thompson	10 Tom_Hanks	10 Tom_Cruise	10 Richard_Gere	10 Paul_Wolfowitz	10 Paradorn_Srichaphan	10 Muhammad_Ali	10 Mohammad_Khatami	10 Jean-David_Levitte	10 Javier_Solana	10 Jason_Kidd	10 Jacques_Rogge	10 Ian_Thorpe	10 Bill_McBride	10 Zhu_Rongji	9 Vaclav_Havel	9 Tung_Chee-hwa	9 Thomas_OBrien	9 Sylvester_Stallone	9 Richard_Armitage	9 Ray_Romano	9 Paul_ONeill	9 Li_Peng	9 Leonardo_DiCaprio	9 Kate_Hudson	9 Jose_Serra	9 John_Abizaid	9 Joan_Laporta	9 Jimmy_Carter	9 Jesse_Jackson	9 Jeong_Se-hyun	9 Hugh_Grant	9 Hosni_Mubarak	9 Heizo_Takenaka	9 George_Clooney	9 Fernando_Gonzalez	9 Colin_Farrell	9 Charles_Taylor	9 Bill_Graham	9 Bill_Frist	9 Yasser_Arafat	8 Yao_Ming	8 Shimon_Peres	8 Sheryl_Crow	8 Ron_Dittemore	8 Robert_Redford	8 Robert_Duvall	8 Robert_Blake	8 Richard_Virenque	8 Ralf_Schumacher	8 Paul_Martin	8 Naji_Sabri	8 Mohamed_ElBaradei	8 Michelle_Kwan	8 Michael_Chang	8 Maria_Shriver	8 Li_Zhaoxing	8 Kim_Dae-jung	8 Kevin_Costner	8 Justin_Timberlake	8 Juan_Pablo_Montoya	8 Jonathan_Edwards	8 John_Edwards	8 Jelena_Dokic	8 Gerry_Adams	8 Fernando_Henrique_Cardoso	8 Cesar_Gaviria	8 Celine_Dion	8 Bob_Hope	8 Antonio_Palocci	8 Ana_Palacio	8 Ali_Naimi	8 Al_Gore	8 Yashwant_Sinha	7 William_Ford_Jr	7 William_Donaldson	7 Vojislav_Kostunica	7 Vincent_Brooks	7 Steven_Spielberg	7 Sophia_Loren	7 Romano_Prodi	7 Robert_Zoellick	7 Pedro_Almodovar	7 Paul_McCartney	7 Oscar_De_La_Hoya	7 Norm_Coleman	7 Mike_Myers	7 Mike_Martz	7 Matthew_Perry	7 Martin_Scorsese	7 Mariah_Carey	7 Liza_Minnelli	7 Larry_Brown	7 Justine_Pasek	7 Jon_Gruden	7 John_Travolta	7 John_McCain	7 John_Manley	7 Jean-Pierre_Raffarin	7 Holly_Hunter	7 Gunter_Pleuger	7 Goldie_Hawn	7 Geoff_Hoon	7 Elton_John	7 Dennis_Kucinich	7 David_Wells	7 Bob_Stoops	7 Binyamin_Ben-Eliezer	7 Ben_Affleck	7 Ana_Guevara	7 Amelia_Vega	7 Al_Sharpton	7 Zinedine_Zidane	6 Yoko_Ono	6 Valery_Giscard_dEstaing	6 Valentino_Rossi	6 Tony_Stewart	6 Tommy_Haas	6 Thaksin_Shinawatra	6 Tariq_Aziz	6 Susan_Sarandon	6 Steve_Lavin	6 Silvan_Shalom	6 Sarah_Jessica_Parker	6 Sarah_Hughes	6 Roy_Moore	6 Roman_Polanski	6 Rob_Marshall	6 Robert_De_Niro	6 Rick_Perry	6 Ricardo_Sanchez	6 Paula_Radcliffe	6 Natalie_Coughlin	6 Monica_Seles	6 Mike_Krzyzewski	6 Michael_Douglas	6 Marco_Antonio_Barrera	6 Luis_Horna	6 Luis_Ernesto_Derbez_Bautista	6 Leonid_Kuchma	6 Kamal_Kharrazi	6 Jose_Manuel_Durao_Barroso	6 JK_Rowling 6 Jim_Furyk	6 Jay_Garner	6 Jan_Ullrich	6 Gwyneth_Paltrow	6 Fujio_Cho 6 Elsa_Zylberstein	6 Edward_Lu	6 Diana_Krall	6 Dennis_Hastert	6 Costas_Simitis	6 Clint_Eastwood	6 Clay_Aiken	6 Christine_Todd_Whitman	6 Charlton_Heston	6 Carmen_Electra	6 Cameron_Diaz	6 Calista_Flockhart	6 Bulent_Ecevit	6 Boris_Becker	6 Bob_Graham	6 Billy_Crystal	6 Arminio_Fraga	6 Angela_Bassett	6 Albert_Costa	6 

Introduction

This project is developed for have a plug-and-play facial recognition tool able to detect and recognize multiple faces from photos. It aim to be inter-operable with other tool. For this purpose, it expose REST api in order to interact with the internal face-recognition engine (train/tune/predict) and return the result of the prediction in a JSON format.

It's written for be a basecode/project-template for future project where a more complicated facial detect + neural network have to be engaged. But is a complete face recognition tool that can be deployed on Docker. Currently it use a Multi Layer Perceptron (MLP) as neural network in order to predict the given faces.

The tool is powered with Flask_MonitoringDashboard that expose some useful utilization/performance graph at the /dashboard endpoint

Requirements

  • face_recognition Extract face point from image
  • Flask The Python micro framework for building web applications
  • Flask_MonitoringDashboard Automatically monitor the evolving performance of Flask/Python web services
  • numpy The fundamental package for scientific computing with Python.
  • olefile Parse, read and write Microsoft OLE2 files (deal with image)
  • Pillow The friendly PIL fork (Python Imaging Library)
  • py-bcrypt Python wrapper of OpenBSD's Blowfish password hashing code
  • redis-py The Python interface to the Redis key-value store.
  • scikit-learn Machine learning in Python
  • tqdm A Fast, Extensible Progress Bar
  • werkzeug The comprehensive WSGI web application library

NOTE: If you encounter an error during pip install -r requirements.txt, it's possible that you have not installed cmake. dlib need cmake. You can install cmake using:

  • apt install cmake -y (Debian/Ubuntu).
  • yum install cmake -y (CentOS/Fedora/RedHat).

Table Of Contents

Prerequisites

The software is coded in Python, into the requirements.txt file are saved the necessary dependencies.

Create a virtual environment with you favorite python package manager

# Create a new environment conda create -n PyRecognizer python=3.7.4 # Activate the environment conda activate PyRecognizer # Install the necessary dependencies pip install -r requirements.txt

At this point all the necessary library for run the tool are ready, and you can run the software.

Usage

You can view the following example video in order to understand how to interact with the tool for the following process:

  • Create dataset from images
  • Predict image
  • Train/Tune the neural network

Video guide for train/predict

Before you can train the neural network with the photos, you need to create an archive that contains the image of the people's faces that you want to predict.

  • Save a bunch of images of the people that you need to recognize.
  • Copy the image in a folder. The name of that folder is important, cause it will be used as a label for the dataset (images) that contains during prediction.
  • Compress the folders in a zip file.

Before train the neural network, you have to create a dataset with the people images that you want to recognize. If your dataset tree structure look likes the following tree dir, you can continue with training phase.

├── bfegan └── ... ├── chris └── ... ├── dhawley └── ... ├── graeme └──... ├── heather └──... 

In this case we have a dataset that contains the photos of 5 people (bfegan, dhawley, heather etc).
Each directory, contains the photos related to the "target".

You can find an example dataset at the following link: https://www.kaggle.com/jessicali9530/lfw-dataset

Some people in this dataset have only very few image.

We can create a new one dataset using the following bash command, in order to extract only the people that contains more than 5 images:

# Extract only the people that have more than 5 photos (-gt 5) for i in $(ls); do a=$(ls $i |wc -l); if [ "$a" -gt 5 ]; then echo $i ; fi ; done > people_ok # Create a directory for store the images mkdir -p /tmp/faces # Copy the filtered directory in the new one for i in $(cat people_ok | xargs echo -n) ; do cp -r $i /tmp/faces/ ; done

At this point the dataset is complete and you can continue with training/tuning.

Backup and remove the already present model (if present,inside the dataset/model directory), the tool will understand that you want to train the model and will initialize a new MLP model. The model have the following name template: %Y%m%d_%H%M%S, related to the time that was generated.

Open your browser at the endpoint:port/train specified in the configuration file (conf/test.json) and you will be redirect to the Administrator login page. NOTE: you can switch on/off the SSL, be sure to add https before the endpoint ip/hostname if it is enabled.
NOTE: In order to access to the training/tuning page, you have to run the script in utils/add_users.py for create an admin user, capable of manage the train/tune for the neural network.
NOTE: A instance of redis have to be up and running if you want to train your custom neural network, cause the login will read the data from redis.

At this point you can upload the dataset (the previous zip file) and wait for the training of the neural network.

You can tail the log in log/pyrecognizer.log in order to understand the status of the training (lnav is your friends).

Once completed, the browser page will be refreshed automatically and you can:

  • predict a new photos that the neural network haven't seen before, realated to the peoeple in the dataset.
  • reduce the treeshold and see how you are similar to a celebrity!.

NOTE: The same procedure can be applied for tune the neural network. By this way, you are going to execute an exhaustive search over specified parameter values for the KNN classifier. And, obviously, is more time consuming and the neural network produced will be more precise. The endpoint is /tune instead of /train

After train/tune phase, you have to modify the configuration file in order to use the new model. The model is saved in a new folder with the related timestamp (modify classifier -> timestamp in the configuration file)

In Details

tree . ├── api │   ├── Api.py # Code that contains the API endpoint logic │   └── templates # Folder that contains the HTML template for tune/train/predict │   ├── train.html │   └── upload.html ├── conf # Configuration folder │   ├── conf.json # Tool configuration file │   ├── dashboard.ini # File related to the Dashboard configuration │   ├── flask_monitoringdashboard.db # Dashboard database │   ├── ssl # SSL Certificates folder │   │   ├── localhost.crt │   │   └── localhost.key ├── dataset # Model folder + test dataset │   ├── face_training_dataset_little.zip # Model used for test train │   ├── face_training_dataset.zip │   └── model # Neural network model's folder │   ├── 20191123_171821 # Folder for the NN model │   │   ├── model.clf # Neural network dumped │   │   ├── model.dat # Data used for train/tune │   │   └── model.json # Hyperparmaters of the NN │   └── README.md ├── datastructure # Datastructure/Class used │   ├── Administrator.py # Class that handle the admin of the NN, for train/tune │   ├── Classifier.py # Class delegated to predict the photos │   ├── Person.py # Class delegated to handle the "stuff" related to loading people data │   └── Response.py # Class delegated to wrap the response ├── docker-compose.yml # docker-compose file for raise up the PyRecognizer (predict + train/tune) ├── Dockerfile # Dockerfile related to the PyRecognizer only (only predict) ├── LICENSE # License file ├── log # Log folder │   └── pyrecognizer.log ├── main.py # Main program to spawn the tool ├── README.md ├── requirements.txt # Dependencies file ├── uploads # Folder that contains the upload data ├── test # Test folder │   ├── conf_test.json │   ├── test_classifier.py # File with test cases │   ├── test_images # Test data │   │   ├── bush_test.jpg │   │   ├── multi_face_test.jpg │   │   └── unknown_face.jpg │   ├── test_log # Log of the test │   │   └── pyrecognizer.log │   └── uploads │   ├── predict │   ├── training │   ├── unknown │   └── upload │   ├── predict │   ├── training │   └── upload ├── utils │   ├── add_users.py # Python file for add a new user for train/tune the network │ └── util.py # Common methods └── wsgi.py

Example response

  • Missing the photo in request
{ "response": { "data": null, "date": "2020-01-12 15:12:14.762526", "description": "You have sent a request without the photo to predict :/", "error": "NO_FILE_IN_REQUEST", "status": "KO" } } 
  • Missing threshold parameter in request
{ "response": { "data": null, "date": "2020-01-12 15:12:14.769286", "description": "You have sent a request without the `threshold` parameter :/", "error": "THRESHOLD_NOT_PROVIDED", "status": "KO" } } 
  • Threshold provided is a number not in the properly range
{ "response": { "data": null, "date": "2020-01-12 15:12:14.776730", "description": "Threshold have to be greater than 0 and lesser than 100!", "error": "THRESHOLD_ERROR_VALUE", "status": "KO" } } 
  • File in request is not a valid one
{ "response": { "data": null, "date": "2019-11-23 18:10:11.038329", "description": "Seems that the file that you have tried to upload is not valid ...", "error": "FILE_NOT_VALID", "status": "KO" } } 
  • Error parsing the threshold parameter
{ "response": { "data": null, "date": "2020-01-12 15:12:14.784154", "description": "Threshold is not an integer!", "error": "UNABLE_CAST_INT", "status": "KO" } } 
  • Dataset upload is not valid
{ "response": { "data": null, "date": "2019-11-23 18:10:11.038329", "description": "Seems that the dataset is not valid", "error": "ERROR DURING LOADING DAT", "status": "KO" } } 
  • Unable to detect a face
{ "response": { "data": null, "date": "2019-11-23 18:10:11.038329", "description": "Seems that in this images there is no face :/", "error": "FACE_NOT_FOUND", "status": "KO" } } 
  • Face not recognized
{ "response": { "data": {}, "date": "2019-11-23 18:17:58.287413", "description": "FACE_NOT_RECOGNIZED", "error": null, "status": "OK" } } 
  • Face recognized
{ "response": { "data": { "iroy": 0.5762745881923004 # Name of the person: confidence }, "date": "2019-11-23 18:23:01.762757", "description": "ijyibbvcgq.png", # Random string for view image prediction (visit /uploads/ijyibbvcgq.png) "error": null, "status": "OK" } } 
  • Missing model's classifier
{ "response": { "data": null, "date": "2019-11-23 18:27:55.761851", "description": "CLASSIFIER_NOT_LOADED", "error": null, "status": "KO" } } 
  • Login not successfully
{ "response": { "data": null, "date": "2019-11-23 18:27:55.761851", "description": "The password inserted is not valid!", "error": "PASSWORD_NOT_VALID", "status": "KO" } } 
  • Unable to connect to redis
{ "response": { "data": null, "date": "2019-11-23 18:27:55.761851", "description": "Seems that the DB is not reachable!", "error": "UNABLE_CONNECT_REDIS_DB", "status": "KO" } } 

Contributing

  • Feel free to open issue in order to require new functionality;
  • Feel free to open issue if you discover a bug;
  • New idea/request/concept are very appreciated!;

Test

In order to run the basic test case, you need to:

  • Spawn the PyRecognizer tool using python main.py
  • Change directory into the test/ folder
  • Run python -m unittest test_classifier.TestPredict

If you are the admin of the neural network, you can test the Admin related methods:

  • Spawn the docker image of a redis-db docker run -dt -p 6379:6379 redis
  • Change directory into the test/ folder
  • Run python -m unittest test_admin.TestAdmin

Versioning

We use SemVer for versioning.

Authors

Contributors

  • Alessio Savi

License

This project is licensed under the MIT License - see the LICENSE file for details

Acknowledgments

Face data are sensible information. In order to mitigate the risk of stealing sensible data, the tool can run in SSL mode for avoid packet sniffing and secure every request using a CSRF mitigation

About

"A neural network to rule them all, a neural network to find them, a neural network to bring them all and verify if is you !!" (Face recognition tool)

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 5