Skip to content
Merged
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ Flash-DMA is a high-performance attention implementation that integrates Flash A
## Key Features

### 🎯 Core Kernel Advantages
- **Mask & Bias Support**: Native support for `(batch_size, {1|num_kv_heads|num_heads}, {0|query_len}, key_len)` shaped attention mask and attention bias tensors
- **Mask & Bias Support**: Native support for `({1|batch_size}, {1|num_kv_heads|num_heads}, {1|query_len}, {1|key_len})` shaped attention mask and attention bias tensors
- **Intelligent Computation Skipping**: Block-level automatic skipping mechanism based on masks, completely bypassing computation and memory access for zero-mask blocks
- **Complete Gradient Support**: Built-in full gradient computation path for attention bias, supporting end-to-end training

Expand Down Expand Up @@ -236,9 +236,9 @@ Flash-DMA integrates the efficient memory access patterns of Flash Attention wit

### Core Technology Integration

- **🎯 Native Mask & Bias Support**: Kernels directly process `(batch_size, {1|num_kv_heads|num_heads}, {0|query_len}, key_len)` shaped tensors
- **🎯 Native Mask & Bias Support**: Kernels directly process `({1|batch_size}, {1|num_kv_heads|num_heads}, {1|query_len}, {1|key_len})` shaped tensors
- **⚡ Block-level Intelligent Skipping**: Unified OR-reduction skipping logic based on masks, completely avoiding computation and memory access for zero blocks
- **🔄 Complete Gradient Chain**: Built-in attention bias gradient computation (dbias) supporting end-to-end differentiable training
- **🔄 Complete Gradient Chain**: Built-in attention bias gradient computation supporting end-to-end differentiable training

### Key Optimization Strategies

Expand Down
4 changes: 2 additions & 2 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ Flash-DMA 是一个高性能的注意力实现,将 Flash Attention 的内存
## 主要特性

### 🎯 核心内核优势
- **Mask & Bias 支持**: 原生支持 `(batch_size, {1|num_kv_heads|num_heads}, {0|query_len}, key_len)` 形状的 attention_mask 和 attention_bias 张量
- **Mask & Bias 支持**: 原生支持 `({1|batch_size}, {1|num_kv_heads|num_heads}, {1|query_len}, {1|key_len})` 形状的 attention_mask 和 attention_bias 张量
- **智能计算跳过**: 基于 attention_mask 的 block-level 自动跳过机制,完全跳过全零 mask 区块的计算和内存访问
- **完整梯度支持**: 内置 attention_bias 的完整梯度计算路径,支持端到端训练

Expand Down Expand Up @@ -236,7 +236,7 @@ Flash-DMA 通过将 Flash Attention 的高效内存访问模式与动态掩码

### 核心技术融合

- **🎯 Mask & Bias 原生支持**: 内核直接处理 `(batch_size, {1|num_kv_heads|num_heads}, {0|query_len}, key_len)` 形状的张量
- **🎯 Mask & Bias 原生支持**: 内核直接处理 `({1|batch_size}, {1|num_kv_heads|num_heads}, {1|query_len}, {1|key_len})` 形状的张量
- **⚡ Block-level 智能跳过**: 基于 mask 的统一 OR-reduction 跳过逻辑,完全避免全零区块的计算和内存访问
- **🔄 完整梯度链路**: 内置 attention bias 梯度计算,支持端到端可微分训练

Expand Down
Loading