@@ -4,7 +4,6 @@ Cloud SQL for PostgreSQL for LangChain
44|preview | |pypi | |versions |
55
66- `Client Library Documentation `_
7- - `How-to Guides `_
87- `Product Documentation `_
98
109.. |preview | image :: https://img.shields.io/badge/support-preview-orange.svg
@@ -14,7 +13,6 @@ Cloud SQL for PostgreSQL for LangChain
1413.. |versions | image :: https://img.shields.io/pypi/pyversions/langchain-google-cloud-sql-pg.svg
1514 :target: https://pypi.org/project/langchain-google-cloud-sql-pg/
1615.. _Client Library Documentation : https://github.com/googleapis/langchain-google-cloud-sql-pg-python
17- .. _How-to Guides : https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main/samples
1816.. _Product Documentation : https://cloud.google.com/sql/docs
1917
2018Quick Start
@@ -87,70 +85,70 @@ Vector Store Usage
8785
8886Use a Vector Store to store embedded data and perform vector search.
8987
90- .. code :: python
88+ .. code-block :: python
9189
92- from langchain_google_cloud_sql_pg import PostgresVectorstore, PostgresEngine
93- from langchain.embeddings import VertexAIEmbeddings
90+ from langchain_google_cloud_sql_pg import PostgresVectorstore, PostgresEngine
91+ from langchain.embeddings import VertexAIEmbeddings
9492
9593
96- engine = PostgresEngine.from_instance(" project-id" , " region" , " my-instance" , " my-database" )
97- engine.init_vectorstore_table(
98- table_name = " my-table" ,
99- vector_size = 768 , # Vector size for `VertexAIEmbeddings()`
100- )
101- embeddings_service = VertexAIEmbeddings()
102- vectorstore = PostgresVectorStore.create_sync(
103- engine,
104- table_name = " my-table" ,
105- embeddings = embedding_service
106- )
94+ engine = PostgresEngine.from_instance(" project-id" , " region" , " my-instance" , " my-database" )
95+ engine.init_vectorstore_table(
96+ table_name = " my-table" ,
97+ vector_size = 768 , # Vector size for `VertexAIEmbeddings()`
98+ )
99+ embeddings_service = VertexAIEmbeddings()
100+ vectorstore = PostgresVectorStore.create_sync(
101+ engine,
102+ table_name = " my-table" ,
103+ embeddings = embedding_service
104+ )
107105
108106 See the full `Vector Store `_ tutorial.
109107
110- .. _`Vector Store` : https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main/samples /vector_store.ipynb
108+ .. _`Vector Store` : https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main/docs /vector_store.ipynb
111109
112110Document Loader Usage
113111~~~~~~~~~~~~~~~~~~~~~
114112
115113Use a document loader to load data as Documents.
116114
117- .. code :: python
115+ .. code-block :: python
118116
119- from langchain_google_cloud_sql_pg import PostgresEngine, PostgresLoader
117+ from langchain_google_cloud_sql_pg import PostgresEngine, PostgresLoader
120118
121119
122- engine = PostgresEngine.from_instance(" project-id" , " region" , " my-instance" , " my-database" )
123- loader = PostgresSQLLoader.create_sync(
124- engine,
125- table_name = " my-table-name"
126- )
127- docs = loader.lazy_load()
120+ engine = PostgresEngine.from_instance(" project-id" , " region" , " my-instance" , " my-database" )
121+ loader = PostgresSQLLoader.create_sync(
122+ engine,
123+ table_name = " my-table-name"
124+ )
125+ docs = loader.lazy_load()
128126
129127 See the full `Document Loader `_ tutorial.
130128
131- .. _`Document Loader` : https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main/samples /document_loader.ipynb
129+ .. _`Document Loader` : https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main/docs /document_loader.ipynb
132130
133131Chat Message History Usage
134132~~~~~~~~~~~~~~~~~~~~~~~~~~~
135133
136134Use Chat Message History to store messages and provide conversation history to LLMs.
137135
138- .. code :: python
136+ .. code-block :: python
139137
140- from langchain_google_cloud_sql_pg import PostgresChatMessageHistory, PostgresEngine
138+ from langchain_google_cloud_sql_pg import PostgresChatMessageHistory, PostgresEngine
141139
142140
143- engine = PostgresEngine.from_instance(" project-id" , " region" , " my-instance" , " my-database" )
144- engine.init_chat_history_table(table_name = " my-message-store" )
145- history = PostgresChatMessageHistory.create_sync(
146- engine,
147- table_name = " my-message-store" ,
148- session_id = " my-session_id"
149- )
141+ engine = PostgresEngine.from_instance(" project-id" , " region" , " my-instance" , " my-database" )
142+ engine.init_chat_history_table(table_name = " my-message-store" )
143+ history = PostgresChatMessageHistory.create_sync(
144+ engine,
145+ table_name = " my-message-store" ,
146+ session_id = " my-session_id"
147+ )
150148
151149 See the full `Chat Message History `_ tutorial.
152150
153- .. _`Chat Message History` : https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main/samples /chat_message_history.ipynb
151+ .. _`Chat Message History` : https://github.com/googleapis/langchain-google-cloud-sql-pg-python/tree/main/docs /chat_message_history.ipynb
154152
155153Contributing
156154~~~~~~~~~~~~
0 commit comments