@@ -19,24 +19,7 @@ def hist(
1919 into bins and draws all bins in one :class:`matplotlib.axes.Axes`.
2020 This is useful when the DataFrame's Series are in a similar scale.
2121
22- Parameters
23- ----------
24- by : str or sequence, optional
25- Column in the DataFrame to group by. It is not supported yet.
26- bins : int, default 10
27- Number of histogram bins to be used.
28- **kwargs
29- Additional keyword arguments are documented in
30- :meth:`DataFrame.plot`.
31-
32- Returns
33- -------
34- class:`matplotlib.AxesSubplot`
35- Return a histogram plot.
36-
37- Examples
38- --------
39- For Series:
22+ **Examples:**
4023
4124 .. plot::
4225 :context: close-figs
@@ -46,6 +29,19 @@ def hist(
4629 >>> df = bpd.DataFrame(np.random.randint(1, 7, 6000), columns=['one'])
4730 >>> df['two'] = np.random.randint(1, 7, 6000) + np.random.randint(1, 7, 6000)
4831 >>> ax = df.plot.hist(bins=12, alpha=0.5)
32+
33+ Args:
34+ by (str or sequence, optional):
35+ Column in the DataFrame to group by. It is not supported yet.
36+ bins (int, default 10):
37+ Number of histogram bins to be used.
38+ **kwargs:
39+ Additional keyword arguments are documented in
40+ :meth:`DataFrame.plot`.
41+
42+ Returns:
43+ class:`matplotlib.AxesSubplot`: A histogram plot.
44+
4945 """
5046 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
5147
@@ -63,48 +59,7 @@ def line(
6359 of items. For consistent results, the random sampling is reproducible.
6460 Use the `sampling_random_state` parameter to modify the sampling seed.
6561
66- Parameters
67- ----------
68- x : label or position, optional
69- Allows plotting of one column versus another. If not specified,
70- the index of the DataFrame is used.
71- y : label or position, optional
72- Allows plotting of one column versus another. If not specified,
73- all numerical columns are used.
74- color : str, array-like, or dict, optional
75- The color for each of the DataFrame's columns. Possible values are:
76-
77- - A single color string referred to by name, RGB or RGBA code,
78- for instance 'red' or '#a98d19'.
79-
80- - A sequence of color strings referred to by name, RGB or RGBA
81- code, which will be used for each column recursively. For
82- instance ['green','yellow'] each column's %(kind)s will be filled in
83- green or yellow, alternatively. If there is only a single column to
84- be plotted, then only the first color from the color list will be
85- used.
86-
87- - A dict of the form {column name : color}, so that each column will be
88- colored accordingly. For example, if your columns are called `a` and
89- `b`, then passing {'a': 'green', 'b': 'red'} will color %(kind)ss for
90- column `a` in green and %(kind)ss for column `b` in red.
91- sampling_n: int, default 100:
92- Number of random items for plotting.
93- sampling_random_state: int, default 0:
94- Seed for random number generator.
95-
96- **kwargs
97- Additional keyword arguments are documented in
98- :meth:`DataFrame.plot`.
99-
100- Returns
101- -------
102- matplotlib.axes.Axes or np.ndarray of them
103- An ndarray is returned with one :class:`matplotlib.axes.Axes`
104- per column when ``subplots=True``.
105-
106- Examples
107- --------
62+ **Examples:**
10863
10964 .. plot::
11065 :context: close-figs
@@ -118,6 +73,44 @@ def line(
11873 ... }
11974 ... )
12075 >>> ax = df.plot.line(x='one')
76+
77+ Args:
78+ x (label or position, optional):
79+ Allows plotting of one column versus another. If not specified,
80+ the index of the DataFrame is used.
81+ y (label or position, optional):
82+ Allows plotting of one column versus another. If not specified,
83+ all numerical columns are used.
84+ color (str, array-like, or dict, optional):
85+ The color for each of the DataFrame's columns. Possible values are:
86+
87+ - A single color string referred to by name, RGB or RGBA code,
88+ for instance 'red' or '#a98d19'.
89+
90+ - A sequence of color strings referred to by name, RGB or RGBA
91+ code, which will be used for each column recursively. For
92+ instance ['green','yellow'] each column's %(kind)s will be filled in
93+ green or yellow, alternatively. If there is only a single column to
94+ be plotted, then only the first color from the color list will be
95+ used.
96+
97+ - A dict of the form {column name : color}, so that each column will be
98+ colored accordingly. For example, if your columns are called `a` and
99+ `b`, then passing {'a': 'green', 'b': 'red'} will color %(kind)ss for
100+ column `a` in green and %(kind)ss for column `b` in red.
101+ sampling_n (int, default 100):
102+ Number of random items for plotting.
103+ sampling_random_state (int, default 0):
104+ Seed for random number generator.
105+
106+ **kwargs:
107+ Additional keyword arguments are documented in
108+ :meth:`DataFrame.plot`.
109+
110+ Returns:
111+ matplotlib.axes.Axes or np.ndarray of them:
112+ An ndarray is returned with one :class:`matplotlib.axes.Axes`
113+ per column when ``subplots=True``.
121114 """
122115 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
123116
@@ -135,30 +128,8 @@ def area(
135128 of items. For consistent results, the random sampling is reproducible.
136129 Use the `sampling_random_state` parameter to modify the sampling seed.
137130
138- Parameters
139- ----------
140- x : label or position, optional
141- Coordinates for the X axis. By default uses the index.
142- y : label or position, optional
143- Column to plot. By default uses all columns.
144- stacked : bool, default True
145- Area plots are stacked by default. Set to False to create a
146- unstacked plot.
147- sampling_n: int, default 100:
148- Number of random items for plotting.
149- sampling_random_state: int, default 0:
150- Seed for random number generator.
151- **kwargs
152- Additional keyword arguments are documented in
153- :meth:`DataFrame.plot`.
154-
155- Returns
156- -------
157- matplotlib.axes.Axes or numpy.ndarray
158- Area plot, or array of area plots if subplots is True.
159-
160- Examples
161- --------
131+ **Examples:**
132+
162133 Draw an area plot based on basic business metrics:
163134
164135 .. plot::
@@ -201,6 +172,26 @@ def area(
201172 ... 'day': [1, 2, 3],
202173 ... })
203174 >>> ax = df.plot.area(x='day')
175+
176+ Args:
177+ x (label or position, optional):
178+ Coordinates for the X axis. By default uses the index.
179+ y (label or position, optional):
180+ Column to plot. By default uses all columns.
181+ stacked (bool, default True):
182+ Area plots are stacked by default. Set to False to create a
183+ unstacked plot.
184+ sampling_n (int, default 100):
185+ Number of random items for plotting.
186+ sampling_random_state (int, default 0):
187+ Seed for random number generator.
188+ **kwargs:
189+ Additional keyword arguments are documented in
190+ :meth:`DataFrame.plot`.
191+
192+ Returns:
193+ matplotlib.axes.Axes or numpy.ndarray:
194+ Area plot, or array of area plots if subplots is True.
204195 """
205196 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
206197
@@ -219,55 +210,8 @@ def scatter(
219210 of items. For consistent results, the random sampling is reproducible.
220211 Use the `sampling_random_state` parameter to modify the sampling seed.
221212
222- Parameters
223-
224- ----------
225- x : int or str
226- The column name or column position to be used as horizontal
227- coordinates for each point.
228- y : int or str
229- The column name or column position to be used as vertical
230- coordinates for each point.
231- s : str, scalar or array-like, optional
232- The size of each point. Possible values are:
233-
234- - A string with the name of the column to be used for marker's size.
235-
236- - A single scalar so all points have the same size.
237-
238- - A sequence of scalars, which will be used for each point's size
239- recursively. For instance, when passing [2,14] all points size
240- will be either 2 or 14, alternatively.
241- c : str, int or array-like, optional
242- The color of each point. Possible values are:
243-
244- - A single color string referred to by name, RGB or RGBA code,
245- for instance 'red' or '#a98d19'.
246-
247- - A sequence of color strings referred to by name, RGB or RGBA
248- code, which will be used for each point's color recursively. For
249- instance ['green','yellow'] all points will be filled in green or
250- yellow, alternatively.
251-
252- - A column name or position whose values will be used to color the
253- marker points according to a colormap.
254- sampling_n: int, default 100:
255- Number of random items for plotting.
256- sampling_random_state: int, default 0:
257- Seed for random number generator.
258-
259- **kwargs
260- Additional keyword arguments are documented in
261- :meth:`DataFrame.plot`.
262-
263- Returns
264- -------
265- matplotlib.axes.Axes or np.ndarray of them
266- An ndarray is returned with one :class:`matplotlib.axes.Axes`
267- per column when ``subplots=True``.
268-
269- Examples
270- --------
213+ **Examples:**
214+
271215 Let's see how to draw a scatter plot using coordinates from the values
272216 in a DataFrame's columns.
273217
@@ -291,5 +235,50 @@ def scatter(
291235 ... y='width',
292236 ... c='species',
293237 ... colormap='viridis')
238+
239+
240+ Args:
241+ x (int or str):
242+ The column name or column position to be used as horizontal
243+ coordinates for each point.
244+ y (int or str):
245+ The column name or column position to be used as vertical
246+ coordinates for each point.
247+ s (str, scalar or array-like, optional):
248+ The size of each point. Possible values are:
249+
250+ - A string with the name of the column to be used for marker's size.
251+
252+ - A single scalar so all points have the same size.
253+
254+ - A sequence of scalars, which will be used for each point's size
255+ recursively. For instance, when passing [2,14] all points size
256+ will be either 2 or 14, alternatively.
257+ c (str, int or array-like, optional):
258+ The color of each point. Possible values are:
259+
260+ - A single color string referred to by name, RGB or RGBA code,
261+ for instance 'red' or '#a98d19'.
262+
263+ - A sequence of color strings referred to by name, RGB or RGBA
264+ code, which will be used for each point's color recursively. For
265+ instance ['green','yellow'] all points will be filled in green or
266+ yellow, alternatively.
267+
268+ - A column name or position whose values will be used to color the
269+ marker points according to a colormap.
270+ sampling_n (int, default 100):
271+ Number of random items for plotting.
272+ sampling_random_state (int, default 0):
273+ Seed for random number generator.
274+
275+ **kwargs:
276+ Additional keyword arguments are documented in
277+ :meth:`DataFrame.plot`.
278+
279+ Returns:
280+ matplotlib.axes.Axes or np.ndarray of them:
281+ An ndarray is returned with one :class:`matplotlib.axes.Axes`
282+ per column when ``subplots=True``.
294283 """
295284 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
0 commit comments