@@ -2638,6 +2638,33 @@ def min(self, axis=0, *, numeric_only: bool = False):
26382638 If you want the *index* of the minimum, use ``idxmin``. This is the
26392639 equivalent of the ``numpy.ndarray`` method ``argmin``.
26402640
2641+ **Examples:**
2642+
2643+ >>> import bigframes.pandas as bpd
2644+ >>> bpd.options.display.progress_bar = None
2645+
2646+ >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]})
2647+ >>> df
2648+ A B
2649+ 0 1 2
2650+ 1 3 4
2651+ <BLANKLINE>
2652+ [2 rows x 2 columns]
2653+
2654+ Finding the minimum value in each column(the default behavior without an explicit axis parameter).
2655+
2656+ >>> df.min()
2657+ A 1.0
2658+ B 2.0
2659+ dtype: Float64
2660+
2661+ Finding the minimum value in each row.
2662+
2663+ >>> df.min(axis=1)
2664+ 0 1.0
2665+ 1 3.0
2666+ dtype: Float64
2667+
26412668 Args:
26422669 axis ({index (0), columns (1)}):
26432670 Axis for the function to be applied on.
@@ -2656,6 +2683,33 @@ def max(self, axis=0, *, numeric_only: bool = False):
26562683 If you want the *index* of the maximum, use ``idxmax``. This is
26572684 the equivalent of the ``numpy.ndarray`` method ``argmax``.
26582685
2686+ **Examples:**
2687+
2688+ >>> import bigframes.pandas as bpd
2689+ >>> bpd.options.display.progress_bar = None
2690+
2691+ >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]})
2692+ >>> df
2693+ A B
2694+ 0 1 2
2695+ 1 3 4
2696+ <BLANKLINE>
2697+ [2 rows x 2 columns]
2698+
2699+ Finding the maximum value in each column(the default behavior without an explicit axis parameter).
2700+
2701+ >>> df.max()
2702+ A 3.0
2703+ B 4.0
2704+ dtype: Float64
2705+
2706+ Finding the maximum value in each row.
2707+
2708+ >>> df.max(axis=1)
2709+ 0 2.0
2710+ 1 4.0
2711+ dtype: Float64
2712+
26592713 Args:
26602714 axis ({index (0), columns (1)}):
26612715 Axis for the function to be applied on.
@@ -2673,6 +2727,33 @@ def sum(self, axis=0, *, numeric_only: bool = False):
26732727
26742728 This is equivalent to the method ``numpy.sum``.
26752729
2730+ **Examples:**
2731+
2732+ >>> import bigframes.pandas as bpd
2733+ >>> bpd.options.display.progress_bar = None
2734+
2735+ >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]})
2736+ >>> df
2737+ A B
2738+ 0 1 2
2739+ 1 3 4
2740+ <BLANKLINE>
2741+ [2 rows x 2 columns]
2742+
2743+ Calculating the sum of each column(the default behavior without an explicit axis parameter).
2744+
2745+ >>> df.sum()
2746+ A 4.0
2747+ B 6.0
2748+ dtype: Float64
2749+
2750+ Calculating the sum of each row.
2751+
2752+ >>> df.sum(axis=1)
2753+ 0 3.0
2754+ 1 7.0
2755+ dtype: Float64
2756+
26762757 Args:
26772758 axis ({index (0), columns (1)}):
26782759 Axis for the function to be applied on.
0 commit comments