Skip to content
169 changes: 169 additions & 0 deletions samples/snippets/sessions_and_io_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


def test_sessions_and_io(project_id: str, dataset_id: str) -> None:
YOUR_PROJECT_ID = project_id
YOUR_LOCATION = "us"

# [START bigquery_dataframes_create_and_use_session_instance]
import bigframes
import bigframes.pandas as bpd

# Create session object
context = bigframes.BigQueryOptions(
project=YOUR_PROJECT_ID,
location=YOUR_LOCATION,
)
session = bigframes.Session(context)

# Load a BigQuery table into a dataframe
df1 = session.read_gbq("bigquery-public-data.ml_datasets.penguins")

# Create a dataframe with local data:
df2 = bpd.DataFrame({"my_col": [1, 2, 3]}, session=session)
# [END bigquery_dataframes_create_and_use_session_instance]
assert df1 is not None
assert df2 is not None

# [START bigquery_dataframes_combine_data_from_multiple_sessions_raise_error]
import bigframes
import bigframes.pandas as bpd

context = bigframes.BigQueryOptions(location=YOUR_LOCATION, project=YOUR_PROJECT_ID)

session1 = bigframes.Session(context)
session2 = bigframes.Session(context)

series1 = bpd.Series([1, 2, 3, 4, 5], session=session1)
series2 = bpd.Series([1, 2, 3, 4, 5], session=session2)

try:
series1 + series2
except ValueError as e:
print(e) # Error message: Cannot use combine sources from multiple sessions
# [END bigquery_dataframes_combine_data_from_multiple_sessions_raise_error]

# [START bigquery_dataframes_set_options_for_global_session]
import bigframes.pandas as bpd

# Set project ID for the global session
bpd.options.bigquery.project = YOUR_PROJECT_ID
# Update the global default session location
bpd.options.bigquery.location = YOUR_LOCATION
# [END bigquery_dataframes_set_options_for_global_session]

# [START bigquery_dataframes_global_session_is_the_default_session]
# The following two statements are essentiall the same
df = bpd.read_gbq("bigquery-public-data.ml_datasets.penguins")
df = bpd.get_global_session().read_gbq("bigquery-public-data.ml_datasets.penguins")
# [END bigquery_dataframes_global_session_is_the_default_session]
assert df is not None

# [START bigquery_dataframes_create_dataframe_from_py_and_np]
import numpy as np

import bigframes.pandas as bpd

s = bpd.Series([1, 2, 3])

# Create a dataframe with Python dict
df = bpd.DataFrame(
{
"col_1": [1, 2, 3],
"col_2": [4, 5, 6],
}
)

# Create a series with Numpy
s = bpd.Series(np.arange(10))
# [END bigquery_dataframes_create_dataframe_from_py_and_np]
assert s is not None

# [START bigquery_dataframes_create_dataframe_from_pandas]
import numpy as np
import pandas as pd

import bigframes.pandas as bpd

pd_df = pd.DataFrame(np.random.randn(4, 2))

# Convert Pandas dataframe to BigQuery DataFrame with read_pandas()
df_1 = bpd.read_pandas(pd_df)
# Convert Pandas dataframe to BigQuery DataFrame with the dataframe constructor
df_2 = bpd.DataFrame(pd_df)
# [END bigquery_dataframes_create_dataframe_from_pandas]
assert df_1 is not None
assert df_2 is not None

# [START bigquery_dataframes_convert_bq_dataframe_to_pandas]
import bigframes.pandas as bpd

bf_df = bpd.DataFrame({"my_col": [1, 2, 3]})
# Returns a Pandas Dataframe
bf_df.to_pandas()

bf_s = bpd.Series([1, 2, 3])
# Returns a Pandas Series
bf_s.to_pandas()
# [END bigquery_dataframes_convert_bq_dataframe_to_pandas]
assert bf_s.to_pandas() is not None

# [START bigquery_dataframes_to_pandas_dry_run]
import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.ml_datasets.penguins")

# Returns a Pandas series with dry run stats
df.to_pandas(dry_run=True)
# [END bigquery_dataframes_to_pandas_dry_run]
assert df.to_pandas(dry_run=True) is not None

# [START bigquery_dataframes_read_data_from_csv]
import bigframes.pandas as bpd

# Read a CSV file from GCS
df = bpd.read_csv("gs://cloud-samples-data/bigquery/us-states/us-states.csv")
# [END bigquery_dataframes_read_data_from_csv]
assert df is not None

# [START bigquery_dataframes_read_data_from_bigquery_table]
import bigframes.pandas as bpd

df = bpd.read_gbq("bigquery-public-data.ml_datasets.penguins")
# [END bigquery_dataframes_read_data_from_bigquery_table]
assert df is not None

# [START bigquery_dataframes_read_from_sql_query]
import bigframes.pandas as bpd

sql = """
SELECT species, island, body_mass_g
FROM bigquery-public-data.ml_datasets.penguins
WHERE sex = 'MALE'
"""

df = bpd.read_gbq(sql)
# [END bigquery_dataframes_read_from_sql_query]
assert df is not None

table_name = "snippets-session-and-io-test"

# [START bigquery_dataframes_dataframe_to_bigquery_table]
import bigframes.pandas as bpd

df = bpd.DataFrame({"my_col": [1, 2, 3]})

df.to_gbq(f"{project_id}.{dataset_id}.{table_name}")
# [END bigquery_dataframes_dataframe_to_bigquery_table]