@@ -48,7 +48,7 @@ def group_add_{{name}}(ndarray[{{c_type}}, ndim=2] out,
4848 nobs = np.zeros_like(out)
4949 sumx = np.zeros_like(out)
5050
51- N, K = (<object> values).shape
51+ N, K = (<object>values).shape
5252
5353 with nogil:
5454
@@ -95,7 +95,7 @@ def group_prod_{{name}}(ndarray[{{c_type}}, ndim=2] out,
9595 nobs = np.zeros_like(out)
9696 prodx = np.ones_like(out)
9797
98- N, K = (<object> values).shape
98+ N, K = (<object>values).shape
9999
100100 with nogil:
101101 for i in range(N):
@@ -141,7 +141,7 @@ def group_var_{{name}}(ndarray[{{c_type}}, ndim=2] out,
141141 nobs = np.zeros_like(out)
142142 mean = np.zeros_like(out)
143143
144- N, K = (<object> values).shape
144+ N, K = (<object>values).shape
145145
146146 out[:, :] = 0.0
147147
@@ -193,7 +193,7 @@ def group_mean_{{name}}(ndarray[{{c_type}}, ndim=2] out,
193193 nobs = np.zeros_like(out)
194194 sumx = np.zeros_like(out)
195195
196- N, K = (<object> values).shape
196+ N, K = (<object>values).shape
197197
198198 with nogil:
199199 for i in range(N):
@@ -238,7 +238,7 @@ def group_ohlc_{{name}}(ndarray[{{c_type}}, ndim=2] out,
238238 if len(labels) == 0:
239239 return
240240
241- N, K = (<object> values).shape
241+ N, K = (<object>values).shape
242242
243243 if out.shape[1] != 4:
244244 raise ValueError('Output array must have 4 columns')
@@ -312,14 +312,14 @@ def group_last_{{name}}(ndarray[{{c_type}}, ndim=2] out,
312312 if not len(values) == len(labels):
313313 raise AssertionError("len(index) != len(labels)")
314314
315- nobs = np.zeros((<object> out).shape, dtype=np.int64)
315+ nobs = np.zeros((<object>out).shape, dtype=np.int64)
316316 {{if name == 'object'}}
317- resx = np.empty((<object> out).shape, dtype=object)
317+ resx = np.empty((<object>out).shape, dtype=object)
318318 {{else}}
319319 resx = np.empty_like(out)
320320 {{endif}}
321321
322- N, K = (<object> values).shape
322+ N, K = (<object>values).shape
323323
324324 {{if name == "object"}}
325325 if True: # make templating happy
@@ -369,14 +369,14 @@ def group_nth_{{name}}(ndarray[{{c_type}}, ndim=2] out,
369369 if not len(values) == len(labels):
370370 raise AssertionError("len(index) != len(labels)")
371371
372- nobs = np.zeros((<object> out).shape, dtype=np.int64)
372+ nobs = np.zeros((<object>out).shape, dtype=np.int64)
373373 {{if name=='object'}}
374- resx = np.empty((<object> out).shape, dtype=object)
374+ resx = np.empty((<object>out).shape, dtype=object)
375375 {{else}}
376376 resx = np.empty_like(out)
377377 {{endif}}
378378
379- N, K = (<object> values).shape
379+ N, K = (<object>values).shape
380380
381381 {{if name == "object"}}
382382 if True: # make templating happy
@@ -462,7 +462,7 @@ def group_rank_{{name}}(ndarray[float64_t, ndim=2] out,
462462
463463 tiebreak = tiebreakers[ties_method]
464464 keep_na = na_option == 'keep'
465- N, K = (<object> values).shape
465+ N, K = (<object>values).shape
466466 grp_sizes = np.ones_like(out)
467467
468468 # Copy values into new array in order to fill missing data
@@ -635,7 +635,7 @@ def group_max(ndarray[groupby_t, ndim=2] out,
635635 maxx.fill(-np.inf)
636636 nan_val = NAN
637637
638- N, K = (<object> values).shape
638+ N, K = (<object>values).shape
639639
640640 with nogil:
641641 for i in range(N):
@@ -697,7 +697,7 @@ def group_min(ndarray[groupby_t, ndim=2] out,
697697 minx.fill(np.inf)
698698 nan_val = NAN
699699
700- N, K = (<object> values).shape
700+ N, K = (<object>values).shape
701701
702702 with nogil:
703703 for i in range(N):
@@ -744,7 +744,7 @@ def group_cummin(ndarray[groupby_t, ndim=2] out,
744744 ndarray[groupby_t, ndim=2] accum
745745 int64_t lab
746746
747- N, K = (<object> values).shape
747+ N, K = (<object>values).shape
748748 accum = np.empty_like(values)
749749 if groupby_t is int64_t:
750750 accum.fill(_int64_max)
@@ -792,7 +792,7 @@ def group_cummax(ndarray[groupby_t, ndim=2] out,
792792 ndarray[groupby_t, ndim=2] accum
793793 int64_t lab
794794
795- N, K = (<object> values).shape
795+ N, K = (<object>values).shape
796796 accum = np.empty_like(values)
797797 if groupby_t is int64_t:
798798 accum.fill(-_int64_max)
0 commit comments