@@ -200,7 +200,7 @@ of the DataFrame):
200200
201201 Consider the ``isin `` method of Series, which returns a boolean vector that is
202202true wherever the Series elements exist in the passed list. This allows you to
203- select out rows where one or more columns have values you want:
203+ select rows where one or more columns have values you want:
204204
205205.. ipython :: python
206206
@@ -215,7 +215,7 @@ more complex criteria:
215215.. ipython :: python
216216
217217 # only want 'two' or 'three'
218- criterion = df2[' a' ].map(lambda x : x.startswith(' t' )
218+ criterion = df2[' a' ].map(lambda x : x.startswith(' t' ))
219219
220220 df2[criterion]
221221
@@ -319,7 +319,7 @@ Duplicate Data
319319
320320.. _indexing.duplicate :
321321
322- If you want to indentify and remove duplicate rows in a DataFrame, there are
322+ If you want to identify and remove duplicate rows in a DataFrame, there are
323323two methods that will help: ``duplicated `` and ``drop_duplicates ``. Each
324324takes as an argument the columns to use to identify duplicated rows.
325325
@@ -569,7 +569,7 @@ in the pandas 0.4 release. It is very exciting as it opens the door to some
569569quite sophisticated data analysis and manipulation, especially for working with
570570higher dimensional data. In essence, it enables you to effectively store and
571571manipulate arbitrarily high dimension data in a 2-dimensional tabular structure
572- (DataFrame), for example. It is not limited to DataFrame
572+ (DataFrame), for example. It is not limited to DataFrames.
573573
574574In this section, we will show what exactly we mean by "hierarchical" indexing
575575and how it integrates with the all of the pandas indexing functionality
0 commit comments