238238_testing_mode_warnings = (DeprecationWarning , ResourceWarning )
239239
240240
241- def set_testing_mode ():
241+ def set_testing_mode () -> None :
242242 # set the testing mode filters
243243 testing_mode = os .environ .get ("PANDAS_TESTING_MODE" , "None" )
244244 if "deprecate" in testing_mode :
245245 for category in _testing_mode_warnings :
246246 warnings .simplefilter ("always" , category )
247247
248248
249- def reset_testing_mode ():
249+ def reset_testing_mode () -> None :
250250 # reset the testing mode filters
251251 testing_mode = os .environ .get ("PANDAS_TESTING_MODE" , "None" )
252252 if "deprecate" in testing_mode :
@@ -257,7 +257,7 @@ def reset_testing_mode():
257257set_testing_mode ()
258258
259259
260- def reset_display_options ():
260+ def reset_display_options () -> None :
261261 """
262262 Reset the display options for printing and representing objects.
263263 """
@@ -333,38 +333,38 @@ def to_array(obj):
333333# Others
334334
335335
336- def getCols (k ):
336+ def getCols (k ) -> str :
337337 return string .ascii_uppercase [:k ]
338338
339339
340340# make index
341- def makeStringIndex (k = 10 , name = None ):
341+ def makeStringIndex (k = 10 , name = None ) -> Index :
342342 return Index (rands_array (nchars = 10 , size = k ), name = name )
343343
344344
345- def makeCategoricalIndex (k = 10 , n = 3 , name = None , ** kwargs ):
345+ def makeCategoricalIndex (k = 10 , n = 3 , name = None , ** kwargs ) -> CategoricalIndex :
346346 """make a length k index or n categories"""
347347 x = rands_array (nchars = 4 , size = n , replace = False )
348348 return CategoricalIndex (
349349 Categorical .from_codes (np .arange (k ) % n , categories = x ), name = name , ** kwargs
350350 )
351351
352352
353- def makeIntervalIndex (k = 10 , name = None , ** kwargs ):
353+ def makeIntervalIndex (k = 10 , name = None , ** kwargs ) -> IntervalIndex :
354354 """make a length k IntervalIndex"""
355355 x = np .linspace (0 , 100 , num = (k + 1 ))
356356 return IntervalIndex .from_breaks (x , name = name , ** kwargs )
357357
358358
359- def makeBoolIndex (k = 10 , name = None ):
359+ def makeBoolIndex (k = 10 , name = None ) -> Index :
360360 if k == 1 :
361361 return Index ([True ], name = name )
362362 elif k == 2 :
363363 return Index ([False , True ], name = name )
364364 return Index ([False , True ] + [False ] * (k - 2 ), name = name )
365365
366366
367- def makeNumericIndex (k = 10 , name = None , * , dtype ):
367+ def makeNumericIndex (k = 10 , name = None , * , dtype ) -> NumericIndex :
368368 dtype = pandas_dtype (dtype )
369369 assert isinstance (dtype , np .dtype )
370370
@@ -382,21 +382,21 @@ def makeNumericIndex(k=10, name=None, *, dtype):
382382 return NumericIndex (values , dtype = dtype , name = name )
383383
384384
385- def makeIntIndex (k = 10 , name = None ):
385+ def makeIntIndex (k = 10 , name = None ) -> Int64Index :
386386 base_idx = makeNumericIndex (k , name = name , dtype = "int64" )
387387 return Int64Index (base_idx )
388388
389389
390- def makeUIntIndex (k = 10 , name = None ):
390+ def makeUIntIndex (k = 10 , name = None ) -> UInt64Index :
391391 base_idx = makeNumericIndex (k , name = name , dtype = "uint64" )
392392 return UInt64Index (base_idx )
393393
394394
395- def makeRangeIndex (k = 10 , name = None , ** kwargs ):
395+ def makeRangeIndex (k = 10 , name = None , ** kwargs ) -> RangeIndex :
396396 return RangeIndex (0 , k , 1 , name = name , ** kwargs )
397397
398398
399- def makeFloatIndex (k = 10 , name = None ):
399+ def makeFloatIndex (k = 10 , name = None ) -> Float64Index :
400400 base_idx = makeNumericIndex (k , name = name , dtype = "float64" )
401401 return Float64Index (base_idx )
402402
@@ -456,57 +456,57 @@ def all_timeseries_index_generator(k: int = 10) -> Iterable[Index]:
456456
457457
458458# make series
459- def make_rand_series (name = None , dtype = np .float64 ):
459+ def make_rand_series (name = None , dtype = np .float64 ) -> Series :
460460 index = makeStringIndex (_N )
461461 data = np .random .randn (_N )
462462 data = data .astype (dtype , copy = False )
463463 return Series (data , index = index , name = name )
464464
465465
466- def makeFloatSeries (name = None ):
466+ def makeFloatSeries (name = None ) -> Series :
467467 return make_rand_series (name = name )
468468
469469
470- def makeStringSeries (name = None ):
470+ def makeStringSeries (name = None ) -> Series :
471471 return make_rand_series (name = name )
472472
473473
474- def makeObjectSeries (name = None ):
474+ def makeObjectSeries (name = None ) -> Series :
475475 data = makeStringIndex (_N )
476476 data = Index (data , dtype = object )
477477 index = makeStringIndex (_N )
478478 return Series (data , index = index , name = name )
479479
480480
481- def getSeriesData ():
481+ def getSeriesData () -> dict [ str , Series ] :
482482 index = makeStringIndex (_N )
483483 return {c : Series (np .random .randn (_N ), index = index ) for c in getCols (_K )}
484484
485485
486- def makeTimeSeries (nper = None , freq = "B" , name = None ):
486+ def makeTimeSeries (nper = None , freq = "B" , name = None ) -> Series :
487487 if nper is None :
488488 nper = _N
489489 return Series (
490490 np .random .randn (nper ), index = makeDateIndex (nper , freq = freq ), name = name
491491 )
492492
493493
494- def makePeriodSeries (nper = None , name = None ):
494+ def makePeriodSeries (nper = None , name = None ) -> Series :
495495 if nper is None :
496496 nper = _N
497497 return Series (np .random .randn (nper ), index = makePeriodIndex (nper ), name = name )
498498
499499
500- def getTimeSeriesData (nper = None , freq = "B" ):
500+ def getTimeSeriesData (nper = None , freq = "B" ) -> dict [ str , Series ] :
501501 return {c : makeTimeSeries (nper , freq ) for c in getCols (_K )}
502502
503503
504- def getPeriodData (nper = None ):
504+ def getPeriodData (nper = None ) -> dict [ str , Series ] :
505505 return {c : makePeriodSeries (nper ) for c in getCols (_K )}
506506
507507
508508# make frame
509- def makeTimeDataFrame (nper = None , freq = "B" ):
509+ def makeTimeDataFrame (nper = None , freq = "B" ) -> DataFrame :
510510 data = getTimeSeriesData (nper , freq )
511511 return DataFrame (data )
512512
@@ -533,14 +533,19 @@ def makeMixedDataFrame():
533533 return DataFrame (getMixedTypeDict ()[1 ])
534534
535535
536- def makePeriodFrame (nper = None ):
536+ def makePeriodFrame (nper = None ) -> DataFrame :
537537 data = getPeriodData (nper )
538538 return DataFrame (data )
539539
540540
541541def makeCustomIndex (
542- nentries , nlevels , prefix = "#" , names = False , ndupe_l = None , idx_type = None
543- ):
542+ nentries ,
543+ nlevels ,
544+ prefix = "#" ,
545+ names : bool | str | list [str ] | None = False ,
546+ ndupe_l = None ,
547+ idx_type = None ,
548+ ) -> Index :
544549 """
545550 Create an index/multindex with given dimensions, levels, names, etc'
546551
@@ -637,7 +642,8 @@ def keyfunc(x):
637642 # convert tuples to index
638643 if nentries == 1 :
639644 # we have a single level of tuples, i.e. a regular Index
640- index = Index (tuples [0 ], name = names [0 ])
645+ name = None if names is None else names [0 ]
646+ index = Index (tuples [0 ], name = name )
641647 elif nlevels == 1 :
642648 name = None if names is None else names [0 ]
643649 index = Index ((x [0 ] for x in tuples ), name = name )
@@ -659,7 +665,7 @@ def makeCustomDataframe(
659665 dtype = None ,
660666 c_idx_type = None ,
661667 r_idx_type = None ,
662- ):
668+ ) -> DataFrame :
663669 """
664670 Create a DataFrame using supplied parameters.
665671
@@ -780,7 +786,7 @@ def _gen_unique_rand(rng, _extra_size):
780786 return i .tolist (), j .tolist ()
781787
782788
783- def makeMissingDataframe (density = 0.9 , random_state = None ):
789+ def makeMissingDataframe (density = 0.9 , random_state = None ) -> DataFrame :
784790 df = makeDataFrame ()
785791 i , j = _create_missing_idx (* df .shape , density = density , random_state = random_state )
786792 df .values [i , j ] = np .nan
@@ -854,7 +860,7 @@ def skipna_wrapper(x):
854860 return skipna_wrapper
855861
856862
857- def convert_rows_list_to_csv_str (rows_list : list [str ]):
863+ def convert_rows_list_to_csv_str (rows_list : list [str ]) -> str :
858864 """
859865 Convert list of CSV rows to single CSV-formatted string for current OS.
860866
0 commit comments