@@ -30,6 +30,43 @@ R packages.
3030Base R
3131------
3232
33+ Slicing with R's |c |_
34+ ~~~~~~~~~~~~~~~~~~~~~
35+
36+ R makes it easy to access ``data.frame `` columns by name
37+
38+ .. code-block :: r
39+
40+ df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
41+ df[, c("a", "c", "e")]
42+
43+ or by integer location
44+
45+ .. code-block :: r
46+
47+ df <- data.frame(matrix(rnorm(1000), ncol=100))
48+ df[, c(1:10, 25:30, 40, 50:100)]
49+
50+ Selecting multiple columns by name in ``pandas `` is straightforward
51+
52+ .. ipython :: python
53+
54+ df = DataFrame(np.random.randn(10 , 3 ), columns = list (' abc' ))
55+ df[[' a' , ' c' ]]
56+ df.loc[:, [' a' , ' c' ]]
57+
58+ Selecting multiple noncontiguous columns by integer location can be achieved
59+ with a combination of the ``iloc `` indexer attribute and ``numpy.r_ ``.
60+
61+ .. ipython :: python
62+
63+ named = list (' abcdefg' )
64+ n = 30
65+ columns = named + np.arange(len (named), n).tolist()
66+ df = DataFrame(np.random.randn(n, n), columns = columns)
67+
68+ df.iloc[:, np.r_[:10 , 24 :30 ]]
69+
3370 |aggregate |_
3471~~~~~~~~~~~~
3572
@@ -407,6 +444,9 @@ The second approach is to use the :meth:`~pandas.DataFrame.groupby` method:
407444 For more details and examples see :ref: `the reshaping documentation
408445<reshaping.pivot>` or :ref: `the groupby documentation<groupby.split> `.
409446
447+ .. |c | replace :: ``c ``
448+ .. _c : http://stat.ethz.ch/R-manual/R-patched/library/base/html/c.html
449+
410450.. |aggregate | replace :: ``aggregate ``
411451.. _aggregate : http://finzi.psych.upenn.edu/R/library/stats/html/aggregate.html
412452
0 commit comments