-
- Notifications
You must be signed in to change notification settings - Fork 19.4k
Description
Code Sample, a copy-pastable example if possible
>>> import pandas as pd >>> import numpy as np >>> s = pd.Series(["a","b","c","a", np.nan], dtype="category") >>> s 0 a 1 b 2 c 3 a 4 NaN dtype: category Categories (3, object): [a, b, c] # `na=False` kwarg should make all missing values False, but this seems broken for categoricals >>> s.str.contains("a", na=False) 0 True 1 False 2 False 3 True 4 NaN dtype: object # compare that to object series >>> s2 = pd.Series(["a","b","c","a", np.nan]) >>> s2 0 a 1 b 2 c 3 a 4 NaN dtype: object >>> s2.str.contains("a", na=False) 0 True 1 False 2 False 3 True 4 False dtype: boolProblem description
.str.contains(..., na=False) should make missing values False when the calling series is of type categorical just like it does for object series.
Expected Output
>>> s = pd.Series(["a","b","c","a", np.nan], dtype="category") >>> s2 = pd.Series(["a","b","c","a", np.nan]) >>> (s.str.contains("a", na=False) == s2.str.contains("a", na=False)).all() TrueOutput of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.7.0.final.0
python-bits: 64
OS: Darwin
OS-release: 17.6.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.23.3
pytest: None
pip: 18.0
setuptools: 40.0.0
Cython: None
numpy: 1.15.0
scipy: None
pyarrow: None
xarray: None
IPython: None
sphinx: None
patsy: None
dateutil: 2.7.3
pytz: 2018.5
blosc: None
bottleneck: None
tables: None
numexpr: None
feather: None
matplotlib: None
openpyxl: None
xlrd: None
xlwt: None
xlsxwriter: None
lxml: None
bs4: None
html5lib: None
sqlalchemy: None
pymysql: None
psycopg2: None
jinja2: None
s3fs: None
fastparquet: None