-
- Notifications
You must be signed in to change notification settings - Fork 19.4k
Description
Code Sample
d = {'col1': [1, np.nan], 'col2': [3, 4]} df = pd.DataFrame(data=d) df.describe()Problem description
The describe method generally only include 9 summary statistics(count, mean, std, min, 25%, 50%, 75%, max, missing) but no missing count which is very import in realworld data analysis.
To include missing count I have to use the following code,
d = {'col1': [1, np.nan], 'col2': [3, 4]} df = pd.DataFrame(data=d) des1 = df.describe() des2 = df.isnull().sum().to_frame(name = 'missing').T pd.concat([des1, des2])Expected Output
Expect include missing count in describe method.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 3.6.5.final.0
python-bits: 64
OS: Darwin
OS-release: 16.7.0
machine: x86_64
processor: i386
byteorder: little
LC_ALL: en_US.UTF-8
LANG: en_US.UTF-8
LOCALE: en_US.UTF-8
pandas: 0.23.0
pytest: 3.5.1
pip: 10.0.1
setuptools: 39.1.0
Cython: 0.28.2
numpy: 1.14.3
scipy: 1.1.0
pyarrow: None
xarray: None
IPython: 6.4.0
sphinx: 1.7.4
patsy: 0.5.0
dateutil: 2.7.3
pytz: 2018.4
blosc: None
bottleneck: 1.2.1
tables: 3.4.3
numexpr: 2.6.5
feather: None
matplotlib: 2.2.2
openpyxl: 2.5.3
xlrd: 1.1.0
xlwt: 1.2.0
xlsxwriter: 1.0.4
lxml: 4.2.1
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.2.7
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None

