LLM Bridge MCP allows AI agents to interact with multiple large language models through a standardized interface. It leverages the Message Control Protocol (MCP) to provide seamless access to different LLM providers, making it easy to switch between models or use multiple models in the same application.
- Unified interface to multiple LLM providers:
- OpenAI (GPT models)
- Anthropic (Claude models)
- Google (Gemini models)
- DeepSeek
- ...
- Built with Pydantic AI for type safety and validation
- Supports customizable parameters like temperature and max tokens
- Provides usage tracking and metrics
The server implements the following tool:
run_llm( prompt: str, model_name: KnownModelName = "openai:gpt-4o-mini", temperature: float = 0.7, max_tokens: int = 8192, system_prompt: str = "", ) -> LLMResponse prompt: The text prompt to send to the LLMmodel_name: Specific model to use (default: "openai:gpt-4o-mini")temperature: Controls randomness (0.0 to 1.0)max_tokens: Maximum number of tokens to generatesystem_prompt: Optional system prompt to guide the model's behavior
To install llm-bridge-mcp for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @sjquant/llm-bridge-mcp --client claude- Clone the repository:
git clone https://github.com/yourusername/llm-bridge-mcp.git cd llm-bridge-mcp- Install uv (if not already installed):
# On macOS brew install uv # On Linux curl -LsSf https://astral.sh/uv/install.sh | sh # On Windows powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"Create a .env file in the root directory with your API keys:
OPENAI_API_KEY=your_openai_api_key ANTHROPIC_API_KEY=your_anthropic_api_key GOOGLE_API_KEY=your_google_api_key DEEPSEEK_API_KEY=your_deepseek_api_key Add a server entry to your Claude Desktop configuration file or .cursor/mcp.json:
"mcpServers": { "llm-bridge": { "command": "uvx", "args": [ "llm-bridge-mcp" ], "env": { "OPENAI_API_KEY": "your_openai_api_key", "ANTHROPIC_API_KEY": "your_anthropic_api_key", "GOOGLE_API_KEY": "your_google_api_key", "DEEPSEEK_API_KEY": "your_deepseek_api_key" } } }This error occurs when the system cannot find the uvx executable in your PATH. To resolve this:
Solution: Use the full path to uvx
Find the full path to your uvx executable:
# On macOS/Linux which uvx # On Windows where.exe uvxThen update your MCP server configuration to use the full path:
"mcpServers": { "llm-bridge": { "command": "/full/path/to/uvx", // Replace with your actual path "args": [ "llm-bridge-mcp" ], "env": { // ... your environment variables } } }This project is licensed under the MIT License - see the LICENSE file for details.