66### Prerequisites
77
88- GCP account with Compute Engine access
9- - A folder containing image frames to process
9+ - A GCP bucket folder containing images to process
1010
1111### Setup Instructions
1212
@@ -36,30 +36,21 @@ detection pipeline.
3636
3737### 4. Process Your Images
3838
39- Given a folder path containing your test images, run:
39+ Given a gcs bucket path containing your test images, run:
4040
4141``` bash
42- bash run_pipeline.sh --input_dir =/path/to/test_images
42+ bash run_pipeline.sh --gcs_path =/path/to/test_images
4343```
4444
45- Replace ` /path/to/test_images ` with the actual path to your image folder.
46-
47- ### 5. View Results
48-
49- The pipeline will create two folders inside your input directory:
50-
51- - ** ` dairy/ ` ** - Contains all cropped objects identified as dairy products
52- - ** ` others/ ` ** - Contains all cropped objects that are not dairy products
53-
54- ### Example
45+ Replace ` /path/to/test_images ` with the actual bucket path to your image
46+ folder, for example:
5547
5648``` bash
57- # If your images are in /home/user/test_images
58- bash run_pipeline.sh --input_dir=/home/user/test_images
49+ bash run_pipeline.sh --gcs_path=gs://dairy_product_detection/test_images/
5950
6051# Results will be in:
61- # /home/user/test_images /dairy/
62- # /home/user/test_images /others/
52+ # $gcs_path/predictions /dairy/
53+ # $gcs_path/predictions /others/
6354```
6455
6556### Troubleshooting
@@ -84,28 +75,27 @@ a particular category (e.g., dairy products, bottles, cans, etc.).
8475Execute the following command to extract objects and generate dataset files:
8576
8677``` python
87- python3 extract_objects.py -- input_dir = / test_images -- category_name= dairy
78+ python3 extract_objects.py -- gcs_path = / test_path -- category_name= $ {category}
8879```
8980
9081Replace:
9182
92- - ` /test_images ` with the path to your image folder.
93- - ` dairy ` with your category name (e.g., bottles, cans, plastic, etc.)
83+ - ` /test_path ` with the path to your image folder.
84+ - ` category ` with your category name (e.g., bottles, cans, plastic, etc.)
9485
9586### 3. Generated Outputs
9687
97- The script will generate two types of outputs inside your input directory :
88+ The script will generate two types of outputs:
9889
9990#### For Image Classification Models
10091
101- A folder named ** ` tempdir/ ` ** will be created containing:
102-
103- - All cropped objects extracted from the images
104- - These cropped images can be directly used to train an image classifier model
92+ A folder named ** objects_for_classification** will be created containing all
93+ cropped objects extracted from the images. These cropped images can be
94+ directly used to train an image classifier model
10595
10696#### For Object Detection/Segmentation Models
10797
108- A COCO format JSON file will be generated containing:
98+ A COCO JSON file will be generated containing:
10999
110100- Annotations for all detected objects
111101- Bounding boxes and segmentation masks
@@ -115,13 +105,13 @@ A COCO format JSON file will be generated containing:
115105
116106``` python
117107# Extract dairy products from images
118- python3 extract_objects.py -- input_dir = / home/ user/ dairy_images -- category_name= dairy
108+ python3 extract_objects.py -- gcs_path = / home/ user/ dairy_images -- category_name= dairy
119109
120110# Extract plastic bottles
121- python3 extract_objects.py -- input_dir = / home/ user/ bottle_images -- category_name= bottles
111+ python3 extract_objects.py -- gcs_path = / home/ user/ bottle_images -- category_name= bottles
122112
123113# Extract metal cans
124- python3 extract_objects.py -- input_dir = / home/ user/ can_images -- category_name= cans
114+ python3 extract_objects.py -- gcs_path = / home/ user/ can_images -- category_name= cans
125115```
126116
127117### Output Structure
@@ -132,18 +122,21 @@ After running the script, your directory will look like:
132122/test_images/
133123├── image1.jpg
134124├── image2.jpg
135- ├── tempdir/ # Cropped objects for classification
125+ ├── objects_for_classification
136126│ ├── crop_001.jpg
137127│ ├── crop_002.jpg
138128│ └── ...
139- └── annotations.json # COCO format file for detection/segmentation
129+ └── annotations.json # COCO format file for detection/segmentation
140130```
141131
142132### Use Cases
143133
144- - ** Image Classification** : Use images from ` tempdir/ ` folder
145- - ** Object Detection** : Use the COCO JSON file with original images
146- - ** Instance Segmentation** : Use the COCO JSON file with segmentation masks
134+ - ** Image Classification Training/Finetuning** : Use images from
135+ ` objects_for_classification/ ` folder
136+ - ** Object Detection Training/Finetuning** : Use the COCO JSON file with
137+ original images
138+ - ** Instance Segmentation Training/Finetuning** : Use the COCO JSON file with
139+ segmentation masks
147140
148141### Tips
149142
0 commit comments