Shattering families #
This file defines the shattering property and VC-dimension of set families.
Main declarations #
Finset.Shatters: The shattering property.Finset.shatterer: The set family of sets shattered by a set family.Finset.vcDim: The Vapnik-Chervonenkis dimension.
TODO #
- Order-shattering
- Strong shattering
A set family 𝒜 shatters a set s if all subsets of s can be obtained as the intersection of s and some element of the set family, and we denote this 𝒜.Shatters s. We also say that s is traced by 𝒜.
Instances For
theorem Finset.Shatters.mono_left {α : Type u_1} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} {s : Finset α} (h : 𝒜 ⊆ ℬ) (h𝒜 : 𝒜.Shatters s) :
ℬ.Shatters s
theorem Finset.Shatters.mono_right {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s t : Finset α} (h : t ⊆ s) (hs : 𝒜.Shatters s) :
𝒜.Shatters t
theorem Finset.Shatters.exists_superset {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : 𝒜.Shatters s) :
∃ t ∈ 𝒜, s ⊆ t
theorem Finset.shatters_of_forall_subset {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : ∀ t ⊆ s, t ∈ 𝒜) :
𝒜.Shatters s
theorem Finset.Shatters.nonempty {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} (h : 𝒜.Shatters s) :
𝒜.Nonempty
@[simp]
The set family of sets that are shattered by 𝒜.
Equations
- 𝒜.shatterer = {s ∈ 𝒜.biUnion Finset.powerset | 𝒜.Shatters s}
Instances For
theorem Finset.shatterer_mono {α : Type u_1} [DecidableEq α] {𝒜 ℬ : Finset (Finset α)} (h : 𝒜 ⊆ ℬ) :
theorem Finset.subset_shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} (h : IsLowerSet ↑𝒜) :
@[simp]
@[simp]
@[simp]
theorem Finset.Shatters.shatterer {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} :
Alias of the reverse direction of Finset.shatters_shatterer.
Pajor's variant of the Sauer-Shelah lemma.
theorem Finset.Shatters.of_compression {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} {s : Finset α} {a : α} (hs : (Down.compression a 𝒜).Shatters s) :
𝒜.Shatters s
theorem Finset.shatterer_compress_subset_shatterer {α : Type u_1} [DecidableEq α] (a : α) (𝒜 : Finset (Finset α)) :
Vapnik-Chervonenkis dimension #
The Vapnik-Chervonenkis dimension of a set family is the maximal size of a set it shatters.
Equations
- 𝒜.vcDim = 𝒜.shatterer.sup Finset.card
Instances For
Down-compressing decreases the VC-dimension.
theorem Finset.card_shatterer_le_sum_vcDim {α : Type u_1} [DecidableEq α] {𝒜 : Finset (Finset α)} [Fintype α] :
The Sauer-Shelah lemma.