Lagrange's theorem: the order of a subgroup divides the order of the group. #
Subgroup.card_subgroup_dvd_card: Lagrange's theorem (for multiplicative groups); there is an analogous version for additive groups
instance QuotientGroup.fintype {α : Type u_1} [Group α] [Fintype α] (s : Subgroup α) [DecidableRel ⇑(leftRel s)] :
Equations
instance QuotientAddGroup.fintype {α : Type u_1} [AddGroup α] [Fintype α] (s : AddSubgroup α) [DecidableRel ⇑(leftRel s)] :
Equations
@[instance 100]
instance QuotientAddGroup.fintypeQuotientRightRel {α : Type u_1} [AddGroup α] {s : AddSubgroup α} [Fintype (α ⧸ s)] :
theorem QuotientAddGroup.card_quotient_rightRel {α : Type u_1} [AddGroup α] (s : AddSubgroup α) [Fintype (α ⧸ s)] :
theorem AddSubgroup.card_add_eq_card_addSubgroup_add_card_quotient {α : Type u_1} [AddGroup α] (s : AddSubgroup α) (t : Set α) :
Lagrange's Theorem: The order of an additive subgroup divides the order of its ambient additive group.
theorem AddSubgroup.card_dvd_of_le {α : Type u_1} [AddGroup α] {H K : AddSubgroup α} (hHK : H ≤ K) :
theorem AddSubgroup.card_comap_dvd_of_injective {α : Type u_1} [AddGroup α] {H : Type u_2} [AddGroup H] (K : AddSubgroup H) (f : α →+ H) (hf : Function.Injective ⇑f) :