Skip to main content
deleted 595 characters in body
Source Link
MJD
  • 68k
  • 9
  • 50
  • 73

triangle face of tetrahedron

As Li Li commented on your closely related Question, the Law of Cosines gives us a system of three quadratic equations This answer is free for unknowns $x_1,x_2,x_3$:

$$ \begin{align*} x_1^2 + x_2^2 - d_3^2 &= 2x_1 x_2 \cos \theta_3 \\ x_1^2 + x_3^2 - d_2^2 &= 2x_1 x_3 \cos \theta_2 \\ x_2^2 + x_3^2 - d_1^2 &= 2x_2 x_3 \cos \theta_1 \end{align*} $$anyone to edit.

triangle face of tetrahedron

As Li Li commented on your closely related Question, the Law of Cosines gives us a system of three quadratic equations for unknowns $x_1,x_2,x_3$:

$$ \begin{align*} x_1^2 + x_2^2 - d_3^2 &= 2x_1 x_2 \cos \theta_3 \\ x_1^2 + x_3^2 - d_2^2 &= 2x_1 x_3 \cos \theta_2 \\ x_2^2 + x_3^2 - d_1^2 &= 2x_2 x_3 \cos \theta_1 \end{align*} $$

This answer is free for anyone to edit.

added link
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115

triangle face of tetrahedron

As Li Li commented on your closely related Question, the Law of CosinesLaw of Cosines gives us a system of three quadratic equations for unknowns $x_1,x_2,x_3$:

$$ \begin{align*} x_1^2 + x_2^2 - d_3^2 &= 2x_1 x_2 \cos \theta_3 \\ x_1^2 + x_3^2 - d_2^2 &= 2x_1 x_3 \cos \theta_2 \\ x_2^2 + x_3^2 - d_1^2 &= 2x_2 x_3 \cos \theta_1 \end{align*} $$

triangle face of tetrahedron

As Li Li commented on your closely related Question, the Law of Cosines gives us a system of three quadratic equations for unknowns $x_1,x_2,x_3$:

$$ \begin{align*} x_1^2 + x_2^2 - d_3^2 &= 2x_1 x_2 \cos \theta_3 \\ x_1^2 + x_3^2 - d_2^2 &= 2x_1 x_3 \cos \theta_2 \\ x_2^2 + x_3^2 - d_1^2 &= 2x_2 x_3 \cos \theta_1 \end{align*} $$

triangle face of tetrahedron

As Li Li commented on your closely related Question, the Law of Cosines gives us a system of three quadratic equations for unknowns $x_1,x_2,x_3$:

$$ \begin{align*} x_1^2 + x_2^2 - d_3^2 &= 2x_1 x_2 \cos \theta_3 \\ x_1^2 + x_3^2 - d_2^2 &= 2x_1 x_3 \cos \theta_2 \\ x_2^2 + x_3^2 - d_1^2 &= 2x_2 x_3 \cos \theta_1 \end{align*} $$

reminding myself how click thru trick works
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115

triangle face of tetrahedron

As Li Li commented on your closely related Question, the Law of Cosines gives us a system of three quadratic equations for unknowns $x_1,x_2,x_3$:

$$ \begin{align*} x_1^2 + x_2^2 - d_3^2 &= 2x_1 x_2 \cos \theta_3 \\ x_1^2 + x_3^2 - d_2^2 &= 2x_1 x_3 \cos \theta_2 \\ x_2^2 + x_3^2 - d_1^2 &= 2x_2 x_3 \cos \theta_1 \end{align*} $$

triangle face of tetrahedron

triangle face of tetrahedron

As Li Li commented on your closely related Question, the Law of Cosines gives us a system of three quadratic equations for unknowns $x_1,x_2,x_3$:

$$ \begin{align*} x_1^2 + x_2^2 - d_3^2 &= 2x_1 x_2 \cos \theta_3 \\ x_1^2 + x_3^2 - d_2^2 &= 2x_1 x_3 \cos \theta_2 \\ x_2^2 + x_3^2 - d_1^2 &= 2x_2 x_3 \cos \theta_1 \end{align*} $$

reminding myself how click thru trick works
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115
Loading
test image for post on main for size, legibility
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115
Loading
added 5 characters in body
Source Link
Loading
added 5 characters in body
Source Link
Loading
added 5 characters in body
Source Link
Loading
deleted 121 characters in body
Source Link
Stella Biderman
  • 31.5k
  • 16
  • 21
Loading
added 97 characters in body
Source Link
Stella Biderman
  • 31.5k
  • 16
  • 21
Loading
deleted 16 characters in body
Source Link
GPerez
  • 7k
  • 12
  • 12
Loading
edited body
Source Link
epimorphic
  • 3.3k
  • 14
  • 9
Loading
added 17 characters in body
Source Link
GPerez
  • 7k
  • 12
  • 12
Loading
Rollback to Revision 11
Source Link
wythagoras
  • 25.8k
  • 18
  • 38
Loading
added 17 characters in body
Source Link
wythagoras
  • 25.8k
  • 18
  • 38
Loading
done
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115
Loading
work in progress
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115
Loading
work in progress
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115
Loading
work in progress
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115
Loading
work in progress
Source Link
hardmath
  • 38k
  • 3
  • 61
  • 115
Loading
added 534 characters in body
Source Link
Loading
added 3 characters in body
Source Link
Loading
added 942 characters in body
Source Link
Loading
added 942 characters in body
Source Link
Loading
added 942 characters in body
Source Link
Loading