Skip to main content
deleted 138 characters in body
Source Link
MJD
  • 68k
  • 9
  • 50
  • 73

SD-test-sandbox-012345678abcdefgh-temporary
ThisThis answer is a SmokeDetector testing post. It may be deleted at any time. I can't post on Meta.SE sandboxfree for insufficient reputationanyone to edit.

SD-test-sandbox-012345678abcdefgh-temporary
This is a SmokeDetector testing post. It may be deleted at any time. I can't post on Meta.SE sandbox for insufficient reputation.

This answer is free for anyone to edit.

SD-test-sandbox-012345678abcdefgh-temporary
Source Link

This line $$\int \frac{1}{f} \frac{df}{dx} dx = \frac{1}{f} f - \int f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$SD-test-sandbox-012345678abcdefgh-temporary
shouldThis is a SmokeDetector testing post. It may be $$\int_a^b \frac{1}{f} \frac{df}{dx} dx = \left[\frac{1}{f} f\right]_a^b - \int_a^b f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ so $$\int_a^b \frac{1}{f} \frac{df}{dx} dx = \left[1\right]_a^b - \int_a^b f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ and $\left[1\right]_a^b=0$ deleted at any time. I can't post on Meta.SE sandbox for insufficient reputation.

This line $$\int \frac{1}{f} \frac{df}{dx} dx = \frac{1}{f} f - \int f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ should be $$\int_a^b \frac{1}{f} \frac{df}{dx} dx = \left[\frac{1}{f} f\right]_a^b - \int_a^b f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ so $$\int_a^b \frac{1}{f} \frac{df}{dx} dx = \left[1\right]_a^b - \int_a^b f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ and $\left[1\right]_a^b=0$

SD-test-sandbox-012345678abcdefgh-temporary
This is a SmokeDetector testing post. It may be deleted at any time. I can't post on Meta.SE sandbox for insufficient reputation.

Source Link
Mark Hurd
  • 706
  • 4
  • 12

This line $$\int \frac{1}{f} \frac{df}{dx} dx = \frac{1}{f} f - \int f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ should be $$\int_a^b \frac{1}{f} \frac{df}{dx} dx = \left[\frac{1}{f} f\right]_a^b - \int_a^b f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ so $$\int_a^b \frac{1}{f} \frac{df}{dx} dx = \left[1\right]_a^b - \int_a^b f \left(-\frac{1}{f^2} \frac{df}{dx}\right) dx$$ and $\left[1\right]_a^b=0$

Post Made Community Wiki by Mark Hurd