$$ \begin{array}{c|c|c} \begin{array}{c} R_{−+}, x_0 < −e_0, x_1 > e_1 \\ C − e_0U_0 + e_1U_1 \\ (x_0 + e_0)^2 + (x_1 − e_1)^2 + x^2_2 \end{array} & \begin{array}{c} R_{0+}, |x_0| ≤ e_0, x_1 > e_1 \\ C + x_0U_0 + e_1U_1 \\ (x_1 − e_1)^2 + x^2_2 \end{array} & \begin{array}{c} R_{++}, x_0 > e_0, x_1 > e_1 \\ C + e_0U_0 + e_1U_1 \\ (x_0 - e_0)^2 + (x_1 − e_1)^2 + x^2_2 \end{array} \\\hline \begin{array}{c} R_{−0}, x_0 < −e_0, |x_1| ≤ e_1 \\ C − e_0U_0 + x_1U_1 \\ (x_0 + e_0)^2 + x^2_2 \end{array} & \begin{array}{c} R_{00}, |x_0| ≤ e_0, |x_1| ≤ e_1 \\ C + x_0U_0 + x_1U_1 \\ x^2_2 \end{array} & \begin{array}{c} R_{+0}, x_0 > e_0, |x_1| ≤ e_1 \\ C + e_0U_0 + x_1U_1 \\ (x_0 - e_0)^2 + x^2_2 \end{array} \\\hline \begin{array}{c} R_{−-}, x_0 < −e_0, x_1 < -e_1 \\ C − e_0U_0 - e_1U_1 \\ (x_0 + e_0)^2 + (x_1 + e_1)^2 + x^2_2 \end{array} & \begin{array}{c} R_{0-}, |x_0| ≤ e_0, x_1 < -e_1 \\ C + x_0U_0 - e_1U_1 \\ (x_1 + e_1)^2 + x^2_2 \end{array} & \begin{array}{c} R_{+-}, x_0 > e_0, x_1 < -e_1 \\ C + e_0U_0 - e_1U_1 \\ (x_0 - e_0)^2 + (x_1 + e_1)^2 + x^2_2 \end{array} \end{array} $$