Timeline for Importance of Cayley's theorem
Current License: CC BY-SA 3.0
15 events
| when toggle format | what | by | license | comment | |
|---|---|---|---|---|---|
| Jul 26, 2021 at 8:51 | answer | added | user943729 | timeline score: 1 | |
| May 1, 2017 at 5:02 | answer | added | Beginner | timeline score: 2 | |
| Dec 6, 2011 at 21:02 | comment | added | Mikko Korhonen | What about Lagrange's theorem? From what I've seen, I would say that's where it all begins.. | |
| Dec 6, 2011 at 20:31 | history | edited | Srivatsan | edited tags | |
| Jun 8, 2011 at 7:49 | history | edited | user9413 | CC BY-SA 3.0 | added 62 characters in body |
| Nov 12, 2010 at 19:30 | comment | added | BBischof | @Chandru, it isn't an answer really. Plus, the answers below are good. I was just trying to point out that maybe you already knew an answer to your question. The answers below however are very nice, I recommend being attentive to them. | |
| Nov 12, 2010 at 19:17 | answer | added | Plop | timeline score: 16 | |
| Nov 12, 2010 at 19:17 | comment | added | anonymous | @BBischof: I consider groups of order $pq$ because, i know that if $p \not\mid (q-1)$, then $G$ is cyclic | |
| Nov 12, 2010 at 19:13 | comment | added | anonymous | @BBischof: Please post whatever you have in mind as an terse answer, so that many naive people may appreciate the question as well as the answer. | |
| Nov 12, 2010 at 19:05 | answer | added | Arturo Magidin | timeline score: 29 | |
| Nov 12, 2010 at 18:43 | answer | added | T.. | timeline score: 15 | |
| Nov 12, 2010 at 18:42 | answer | added | marwalix | timeline score: 2 | |
| Nov 12, 2010 at 18:38 | comment | added | BBischof | Also, I find it strange. You care about groups of order pq, but what about other groups of specific order? If you do some exercises in Sylow theory, you will quickly find ones that require you to look at the induced automorphisms on subgroups, and they exploit Cayley's theorem and simplicity results of symmetric groups to get contradictions. If you are interested in groups of order pq, go look at classification of groups and how they use Cayley's. | |
| Nov 12, 2010 at 18:36 | comment | added | BBischof | In response to your list, I am a big fan of the fundamental theorem of finitely generated abelian groups... but maybe you consider that a corollary. | |
| Nov 12, 2010 at 18:28 | history | asked | user9413 | CC BY-SA 2.5 |