Skip to main content
^C
Source Link
BCLC
  • 14.4k
  • 13
  • 75
  • 172

$\sigma(X) \doteq \{X^{-1}(B) | B \in \ \mathscr{B}\} = \{ \emptyset, \Omega, (TT), (TH, HT), (HH) \}$$\sigma(X) \doteq \{X^{-1}(B) | B \in \ \mathscr{B}\} = \{ \emptyset, \Omega, (TT), (TH, HT), (HH), (HH)^C, (TT)^C, (TH, HT)^C \}$

$\sigma(X) \doteq \{X^{-1}(B) | B \in \ \mathscr{B}\} = \{ \emptyset, \Omega, (TT), (TH, HT), (HH) \}$

$\sigma(X) \doteq \{X^{-1}(B) | B \in \ \mathscr{B}\} = \{ \emptyset, \Omega, (TT), (TH, HT), (HH), (HH)^C, (TT)^C, (TH, HT)^C \}$

Rollback to Revision 1
Source Link
BCLC
  • 14.4k
  • 13
  • 75
  • 172

PS I think you're missing some sets in $\mathscr{F}_2$.


PS I think you're missing some sets in $\mathscr{F}_2$.

last part
Source Link
BCLC
  • 14.4k
  • 13
  • 75
  • 172

PS I think you're missing some sets in $\mathscr{F}_2$.


PS I think you're missing some sets in $\mathscr{F}_2$.

Source Link
BCLC
  • 14.4k
  • 13
  • 75
  • 172
Loading