Skip to main content
added 22 characters in body
Source Link
Nathaniel Bubis
  • 33.6k
  • 10
  • 88
  • 147

You can easily prove that if $A^n=0$: $$(A+I)(I-A+A^2-...+(-1)^n A^{n-1}) = I +(-1)^{n-1} A^n = I$$$$\left(A+I\right)\left(I-A+A^2-...+(-1)^n A^{n-1}\right) = I +(-1)^{n-1} A^n = I$$ Thus proving that $A+I$ is invertible for any nilpotent $A$.

You can easily prove that if $A^n=0$: $$(A+I)(I-A+A^2-...+(-1)^n A^{n-1}) = I +(-1)^{n-1} A^n = I$$ Thus proving that $A+I$ is invertible for any nilpotent $A$.

You can easily prove that if $A^n=0$: $$\left(A+I\right)\left(I-A+A^2-...+(-1)^n A^{n-1}\right) = I +(-1)^{n-1} A^n = I$$ Thus proving that $A+I$ is invertible for any nilpotent $A$.

added 12 characters in body
Source Link
Nathaniel Bubis
  • 33.6k
  • 10
  • 88
  • 147

You can easily prove that if $A^n=0$: $$(A+I)(I-A+A^2-...+(-1)^n A^{n-1}) = I +(-1)^{n-1} A^n = I$$ Thus proving that $A+I$ is invertible for any positivenilpotent $n$$A$.

You can easily prove that: $$(A+I)(I-A+A^2-...+(-1)^n A^{n-1}) = I +(-1)^{n-1} A^n = I$$ Thus proving that $A+I$ is invertible for any positive $n$.

You can easily prove that if $A^n=0$: $$(A+I)(I-A+A^2-...+(-1)^n A^{n-1}) = I +(-1)^{n-1} A^n = I$$ Thus proving that $A+I$ is invertible for any nilpotent $A$.

Source Link
Nathaniel Bubis
  • 33.6k
  • 10
  • 88
  • 147

You can easily prove that: $$(A+I)(I-A+A^2-...+(-1)^n A^{n-1}) = I +(-1)^{n-1} A^n = I$$ Thus proving that $A+I$ is invertible for any positive $n$.