$A$$\mathrm A$ is not merely tridiagonal, it is also Toeplitz. Hence, the $n$ real eigenvalues of $A$$\mathrm A$ are given by [0]
$$\lambda_k (A) = 2 + 2 \cos \left(\frac{k \pi}{n+1}\right)$$$$\lambda_k (\mathrm A) = 2 + 2 \cos \left(\frac{k \pi}{n+1}\right)$$
for $k \in \{1,2,\dots,n\}$. Thus,
$$0 < 2 - 2 \cos \left(\frac{\pi}{n+1}\right) \leq \lambda_k (A) \leq 2 + 2 \cos \left(\frac{\pi}{n+1}\right) < 4$$$$0 < 2 - 2 \cos \left(\frac{\pi}{n+1}\right) \leq \lambda_k (\mathrm A) \leq 2 + 2 \cos \left(\frac{\pi}{n+1}\right) < 4$$
and we conclude that $A$$\mathrm A$ is invertible.
[0] Silvia Noschese, Lionello Pasquini, and Lothar Reichel, Tridiagonal Toeplitz Matrices: Properties and Novel Applications, 2006.