The javascript code used to make the picture frames of the gif follows at the bottom. The code can be used as a starting point to make your own improved gif/animation or just single png frame. [may try to clean js code up later on as well as make more running time efficient]. I then clicked through to each pic, carefully screen captured the same bordered region for each pic, and saved to file. I integrated them into a gif using http://gifcreator.me/ (most frames got 250ms delay, but the first and the last of each of the 6 sequences got 750ms). I took that final gif and uploaded to stackexchange httphttps://meta.stackexchange.com/questions/75491/how-to-upload-an-image-to-a-post
In case the above very short explanation + pic is not enough, here is a longer re-explanation (leveraging pic):
Simple Geometrical Explanation:
[To get a simple explanation, we have to have a simple approach. A circle is a simple, easy-to-make shape, and this problem was studied ages ago with simplified reasoning.]
The question posed is why can't we approximate the length of a circle [PI = the length of a circle of diameter 1] by measuring the length of a "staircase" path that hugs the circle tightly?
The answer is simple:
If we aim to find the length of some near straight object from point A to point B, we want to measure as closely as possible to a straight path from A to B (see green/red quasi-overlap). We won't get the correct answer if instead, like the staircase approach above (purple), we measure from A to a point far off to the side and then from that point to B. This is very intuitive.
Now, to approximate the length of a circle, we replace the whole circle with many little straight paths following closely the shape of the circle (green). We do use a single direct connecting (green) piece between every two adjacent points A and B (A and B, not pictured, would be where adjacent gray lines intersect red circle) instead of using the inaccurate 2-piece (purple) step. Do observe a key point that makes this work out: any little arc of a circle, as with any small section of any simple curve, becomes nearly indistinguishable from a similarly sized line segment when these are short enough.
[Recap:] So, at any angle around the circle, for large N, a small green line segment ≈ small red arc. Meanwhile around most of circle 2 right angled purple line segments are clearly > matching red arc, no matter N. This is why the green approximation gets very close to π while the purple approximation is way off at 4. [Note: green π = N sin (pi/N) and is easily derivable from basic geometry by summing 2*N pieces that are opposite radial triangles with hypotnuse .5 and central angles 2π/(2N).]
[Finally, I apologize if you can't discern green from red. I may change colors later but found these convenient and generally easy to differentiate.]