Skip to main content
added 16 characters in body
Source Link
Guy Fsone
  • 25.3k
  • 5
  • 66
  • 114

Short Answer

ELetLet set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the presentpresence of the powerful integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

since, $$\\ 2 I_tJ_t = I_tJ_t+I_tJ_t = \\= \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) + \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\= \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\sin(x^2+y^2)dxdy $$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $

Short

ELet set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the present of the integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

since, $$\\ 2 I_tJ_t = I_tJ_t+I_tJ_t = \\= \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) + \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\= \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\sin(x^2+y^2)dxdy $$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $

Short Answer

Let set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the presence of the powerful integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

since, $$\\ 2 I_tJ_t = I_tJ_t+I_tJ_t = \\= \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) + \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\= \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\sin(x^2+y^2)dxdy $$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $

added 314 characters in body
Source Link
Guy Fsone
  • 25.3k
  • 5
  • 66
  • 114

Short

ELet set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the present of the integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

since, $$\\ 2 I_tJ_t = I_tJ_t+I_tJ_t = \\= \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) + \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\= \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\sin(x^2+y^2)dxdy $$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $

Short

ELet set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the present of the integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $

Short

ELet set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the present of the integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

since, $$\\ 2 I_tJ_t = I_tJ_t+I_tJ_t = \\= \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) + \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\= \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\sin(x^2+y^2)dxdy $$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $

Source Link
Guy Fsone
  • 25.3k
  • 5
  • 66
  • 114

Short

ELet set, $$I=\int_0^\infty \cos(x^2) dx \quad\text{and}\quad J=\int_0^\infty \sin(x^2) dx$$

Summary: We will prove that $$ \color{blue}{0= (I+J)(I-J)=I^2 -J^2 =\lim_{t \to 0}I_t^2-J^2_t}$$ Where, $$I_t = \int_0^\infty e^{-tx^2}\cos(x^2) dx~~~~\text{and}~~~ J_t = \int_0^\infty e^{-tx^2}\sin(x^2) dx$$ $t\mapsto I_t$ and $t\mapsto J_t$ are clearly continuous due to the present of the integrand factor $e^{-tx^2}$.

However, By Fubini we have,

\begin{split} I_t^2-J^2_t&=& \left(\int_0^\infty e^{-tx^2}\cos(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\cos(y^2) dy\right) - \left(\int_0^\infty e^{-tx^2}\sin(x^2) dx\right) \left(\int_0^\infty e^{-ty^2}\sin(y^2) dy\right) \\ &=& \int_0^\infty \int_0^\infty e^{-t(x^2+y^2)}\cos(x^2+y^2)dxdy\\ &=&\int_0^{\frac\pi2}\int_0^\infty re^{-tr^2}\cos r^2 drd\theta\\&=&\frac\pi4 Re\left( \int_0^\infty \left[\frac{1}{i-t}e^{(i-t)r^2}\right]' dr\right)\\ &=&\color{blue}{\frac\pi4\frac{t}{1+t^2}\to 0~~as ~~~t\to 0} \end{split}

<To end the proof:** Let show that $I\ge 0$ and $J\ge 0$. Performing an integration by part we obtain $$J = \frac{1}{\sqrt{2}} \int^\infty_0\frac{\sin(2x)}{x^{1/2}}\,dx=\frac{1}{\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{2\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{3/2}}\,dx\color{red}{\ge0}$$ Given that $\color{red}{\sin 2x= 2\sin x\cos x =(\sin^2x)'}$. Similarly we have, $$I = \frac{1}{\sqrt{2}}\int^\infty_0\frac{\cos(2x)}{\sqrt{x}}\,dx=\frac{1}{2\sqrt{2}}\underbrace{\left[\frac{\sin 2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{1}{4\sqrt{2}} \int^\infty_0\frac{\sin 2 x}{x^{3/2}}\,dx\\= \frac{1}{4\sqrt{2}}\underbrace{\left[\frac{\sin^2 x}{x^{1/2}}\right]_0^\infty}_{=0} +\frac{3}{8\sqrt{2}} \int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx\color{red}{\ge0}$$

Conclusion: $I^2-J^2 =0$.

However using similar technique in above prove one can easily arrives at the following $$I_tJ_t = \frac\pi8\frac{1}{t^2+1}$$ from which one get explicit value of $$I^2=J^2= IJ = \lim_{t\to 0}I_tJ_t =\frac\pi8$$

for more details see here:Proof only by transformation that : $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $