No need to index twice. The process is quite similar to the way you get $E[x]$
I believe the problem here is how to get $E[x^2]$
Please refer to Markus Scheuer's efforts:
In his answer he derived: $$ \begin{align*} E(x)&=rp^r\sum_{k=0}^{\infty}\binom{k+r}{k}(1-p)^k\\ \end{align*}. $$ Follow the similar way, and apply to $E[X^2]$ $$ \begin{align*} E(x^2)&=rp^r\sum_{k=0}^{\infty}(k+r)\binom{k+r}{k}(1-p)^k\\ \end{align*} $$ We need a way to change (k+r)$(k+r)$ to (k+r-1)$(k+r-1)$, then the outside (k+r)$(k+r)$ can be combined with (k+r-1)!$(k+r-1)!$ as (k+r)!$(k+r)!$, so I refer to the wiki page $$ \begin{align*} \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}\\ \end{align*} $$
$$ \begin{align*} (k+r)\binom{k+r}{k}&=(k+r)\binom{k+r-1}{k-1}+(k+r)\binom{k+r-1}{k}\\ &=(r+1)\binom{k+r}{k-1}+r\binom{k+r}{k}\\ \end{align*} $$ So: $$ \begin{align*} E(x^2)&=rp^r\sum_{k=0}^{\infty}(k+r)\binom{k+r}{k}(1-p)^k\\ &=rp^r\sum_{k=0}^{\infty}[(r+1)\binom{k+r}{k-1}+r\binom{k+r}{k}](1-p)^k\\ &=rp^r\sum_{k=0}^{\infty}[(r+1)\binom{k+r}{k-1}](1-p)^k+rp^r\sum_{k=0}^{\infty}[r\binom{k+r}{k}](1-p)^k\\ \end{align*} $$ then, still, use Markus Scheuer's idea in remember to use binomial series expansion
Finally, you will get $$ \begin{align*} E(x^2)&=\frac{r(1-r-p)}{p^2}\\ \end{align*} $$
$$ \begin{align*} V(X)&=E(x^2)-[E(x)]^2\\ &=\frac{r(1-r-p)}{p^2}+\frac{r^2}{p^2}\\ &=\frac{r(1-p)}{p^2} \end{align*} $$