Skip to main content
summarised question in title
Link
Jam
  • 10.8k
  • 4
  • 30
  • 45

Integrating a Product of Trigonometric Functions Solve $\int_{-\infty}^{\infty} \text{sech}^2(x-a)\text{sech}^2(x+a)\ \mathrm{d}x$

Source Link

Integrating a Product of Trigonometric Functions

I am wondering if anyone knows a trick on how to solve this integral $$f(a)=\int_{-\infty}^{\infty} \text{sech}^2(x-a)\text{sech}^2(x+a)dx.$$ The answer should be a function of $a$.

Basically I am trying to reproduce some results from a paper. I've tried Matlab/Wolfram/Mathematica to no avail.