Timeline for Proving an alternating Euler sum: $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} H_k}{k} = \frac{1}{2} \zeta(2) - \frac{1}{2} \log^2 2$
Current License: CC BY-SA 4.0
2 events
| when toggle format | what | by | license | comment | |
|---|---|---|---|---|---|
| Aug 26, 2021 at 0:14 | history | edited | Donald Splutterwit | CC BY-SA 4.0 | Corrected Equation. |
| Sep 4, 2020 at 0:45 | history | answered | Donald Splutterwit | CC BY-SA 4.0 |