Let $T : P_{2}(C) \to C^3$ be a linear transformation such that $$T(a + bx + cx^2) = (a, a + b, a + b + c)$$
Find the matrix representation $[T]$ relative to the standard bases.
I know how to do if it related to $R^n$If standard basis for $R^3$, but
$T(1,0,0)=(1,0,0)$
$T(0,1,0)=(1,1,0)$
$T(0,0,1)=(1,1,1)$
Therefore, $[T]$ = \begin{bmatrix}1&0&0\\1&1&0\\1&1&1\end{bmatrix}
But it is the same with C$C^3$ ?