Skip to main content
added 37 characters in body
Source Link
Arturo Magidin
  • 419.6k
  • 60
  • 868
  • 1.2k

If you compute the determinant of $A-\lambda I$ outright you should get:

$$ \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} = $$$$\begin{align*} \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} &= -\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix}\\ &= -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} \end{align*}$$ $$-\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} = -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} $$ byby cofactor expansion along the bottom rows. The last term is:

$$ -\lambda(1-\lambda)[\lambda^2-2\lambda +1] = \lambda(\lambda -1)[(\lambda-1)^2] = \lambda(\lambda -1)^3. $$ From here, you know that the minimal polynomial is one of $\lambda (\lambda -1), \lambda (\lambda -1)^2, \lambda (\lambda -1)^3$ since it must share the same roots as the characteristic polynomial. Since there are only three you can plug in and check.

If you compute the determinant of $A-\lambda I$ you should get:

$$ \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} = $$ $$-\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} = -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} $$ by cofactor expansion along the bottom rows. The last term is:

$$ -\lambda(1-\lambda)[\lambda^2-2\lambda +1] = \lambda(\lambda -1)[(\lambda-1)^2] = \lambda(\lambda -1)^3. $$ From here, you know that the minimal polynomial is one of $\lambda (\lambda -1), \lambda (\lambda -1)^2, \lambda (\lambda -1)^3$ since it must share the same roots as the characteristic polynomial. Since there are only three you can plug in and check.

If you compute the determinant of $A-\lambda I$ outright you should get:

$$\begin{align*} \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} &= -\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix}\\ &= -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} \end{align*}$$ by cofactor expansion along the bottom rows. The last term is:

$$ -\lambda(1-\lambda)[\lambda^2-2\lambda +1] = \lambda(\lambda -1)[(\lambda-1)^2] = \lambda(\lambda -1)^3. $$ From here, you know that the minimal polynomial is one of $\lambda (\lambda -1), \lambda (\lambda -1)^2, \lambda (\lambda -1)^3$ since it must share the same roots as the characteristic polynomial. Since there are only three you can plug in and check.

added 251 characters in body
Source Link

If you compute the determinant of $A-\lambda I$ outright you should get:

$$ \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} = $$ $$-\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} = -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} $$ by cofactor expansion along the bottom rows. The last term is:

$$ -\lambda(1-\lambda)[\lambda^2-2\lambda +1] = \lambda(\lambda -1)[(\lambda-1)^2] = \lambda(\lambda -1)^3. $$ From here, you know that the minimal polynomial is one of $\lambda (\lambda -1), \lambda (\lambda -1)^2, \lambda (\lambda -1)^3$ since it must share the same roots as the characteristic polynomial. Since there are only three you can plug in and check.

If you compute the determinant of $A-\lambda I$ outright you should get:

$$ \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} = $$ $$-\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} = -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} $$ by cofactor expansion along the bottom rows. The last term is:

$$ -\lambda(1-\lambda)[\lambda^2-2\lambda +1] = \lambda(\lambda -1)[(\lambda-1)^2] = \lambda(\lambda -1)^3. $$

If you compute the determinant of $A-\lambda I$ you should get:

$$ \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} = $$ $$-\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} = -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} $$ by cofactor expansion along the bottom rows. The last term is:

$$ -\lambda(1-\lambda)[\lambda^2-2\lambda +1] = \lambda(\lambda -1)[(\lambda-1)^2] = \lambda(\lambda -1)^3. $$ From here, you know that the minimal polynomial is one of $\lambda (\lambda -1), \lambda (\lambda -1)^2, \lambda (\lambda -1)^3$ since it must share the same roots as the characteristic polynomial. Since there are only three you can plug in and check.

Source Link

If you compute the determinant of $A-\lambda I$ outright you should get:

$$ \det\begin{bmatrix} -\lambda & 1 & -1& 1\\ -1 & 2-\lambda & -1 & 1\\ 0&0 & 1-\lambda & -1 \\ 0&0&0& -\lambda \end{bmatrix} = $$ $$-\lambda \det\begin{bmatrix}-\lambda & 1 & -1\\ -1 & 2-\lambda & -1 \\ 0 & 0 & 1-\lambda \end{bmatrix} = -\lambda(1-\lambda) \det\begin{bmatrix} -\lambda & 1\\ -1 & 2-\lambda\end{bmatrix} $$ by cofactor expansion along the bottom rows. The last term is:

$$ -\lambda(1-\lambda)[\lambda^2-2\lambda +1] = \lambda(\lambda -1)[(\lambda-1)^2] = \lambda(\lambda -1)^3. $$