Timeline for Proving an alternating Euler sum: $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} H_k}{k} = \frac{1}{2} \zeta(2) - \frac{1}{2} \log^2 2$
Current License: CC BY-SA 4.0
1 event
| when toggle format | what | by | license | comment | |
|---|---|---|---|---|---|
| Jun 30, 2021 at 12:06 | history | answered | R. J. Mathar | CC BY-SA 4.0 |