Skip to main content
Added mathjax
Source Link
VoidGawd
  • 3.1k
  • 2
  • 15
  • 46

Given, R$R$ is a commutative ring with unity. a be the unit and b²=0$b^2=0$. Let c$c$ be the multiplicative inverse of a$a$.

Case 1$1$: 
If b=0$b=0$
a.c=1$a.c=1$
=>(a+0).c=1$\Rightarrow(a+0).c=1$
=>(a+b).c=1$\Rightarrow(a+b).c=1$

Implies a+b$\implies a+b$ is a unit.

Case 2$2$: 
If b≠0$If b≠0$
b²=0$b^2=0$
=>(bc)²=0$\Rightarrow(bc)²=0$
=>1-(bc)²=1$\Rightarrow1-(bc)²=1$
=>[(1+bc)(1-bc)]=1$\Rightarrow[(1+bc)(1-bc)]=1$. [ Since, R$R$ is a commutative ring] 
=>[(a+b)(c-bc²)]=1$\Rightarrow[(a+b)(c-bc²)]=1$. [ Since, c$c$ is the multiplicative inverse of a]$a$]

implies a+b$\implies a+b$ is unit.

Hence proved.

Given, R is a commutative ring with unity. a be the unit and b²=0. Let c be the multiplicative inverse of a.

Case 1: If b=0 a.c=1 =>(a+0).c=1 =>(a+b).c=1

Implies a+b is a unit.

Case 2: If b≠0 b²=0 =>(bc)²=0 =>1-(bc)²=1 =>[(1+bc)(1-bc)]=1. [ Since, R is a commutative ring] =>[(a+b)(c-bc²)]=1. [ Since, c is the multiplicative inverse of a]

implies a+b is unit.

Hence proved.

Given, $R$ is a commutative ring with unity. a be the unit and $b^2=0$. Let $c$ be the multiplicative inverse of $a$.

Case $1$: 
If $b=0$
$a.c=1$
$\Rightarrow(a+0).c=1$
$\Rightarrow(a+b).c=1$

$\implies a+b$ is a unit.

Case $2$: 
$If b≠0$
$b^2=0$
$\Rightarrow(bc)²=0$
$\Rightarrow1-(bc)²=1$
$\Rightarrow[(1+bc)(1-bc)]=1$. [ Since, $R$ is a commutative ring] 
$\Rightarrow[(a+b)(c-bc²)]=1$. [ Since, $c$ is the multiplicative inverse of $a$]

$\implies a+b$ is unit.

Hence proved.

Source Link

Given, R is a commutative ring with unity. a be the unit and b²=0. Let c be the multiplicative inverse of a.

Case 1: If b=0 a.c=1 =>(a+0).c=1 =>(a+b).c=1

Implies a+b is a unit.

Case 2: If b≠0 b²=0 =>(bc)²=0 =>1-(bc)²=1 =>[(1+bc)(1-bc)]=1. [ Since, R is a commutative ring] =>[(a+b)(c-bc²)]=1. [ Since, c is the multiplicative inverse of a]

implies a+b is unit.

Hence proved.