Skip to main content
Post Undeleted by OnTheWay
Post Deleted by OnTheWay
Post Undeleted by OnTheWay
Post Deleted by OnTheWay
Post Undeleted by OnTheWay
Post Deleted by OnTheWay
added 133 characters in body
Source Link
FShrike
  • 48.2k
  • 3
  • 38
  • 98

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{gathered} K =\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} = - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ =- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} + 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} = - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{gathered}$$$$\begin{align} K&=\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx}\\&= - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \\&=- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \\&\quad\quad+ 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} \\&= - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{align}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

The closed form for $K$ is: $$K=\frac{4\pi}{3}\cdot G-\frac{35}{36}\cdot\zeta(3)-\frac{5\pi}{36\sqrt{3}}(\psi'(1/3)-\psi'(2/3))$$

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{gathered} K =\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} = - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ =- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} + 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} = - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{gathered}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{align} K&=\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx}\\&= - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \\&=- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \\&\quad\quad+ 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} \\&= - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{align}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

The closed form for $K$ is: $$K=\frac{4\pi}{3}\cdot G-\frac{35}{36}\cdot\zeta(3)-\frac{5\pi}{36\sqrt{3}}(\psi'(1/3)-\psi'(2/3))$$

added 25 characters in body
Source Link
OnTheWay
  • 4.3k
  • 7
  • 23

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{array}{l} K = \displaystyle\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} = - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \\ = - 2\displaystyle\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} + 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} = - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \end{array}$$$$\begin{gathered} K =\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} = - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ =- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} + 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} = - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{gathered}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{array}{l} K = \displaystyle\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} = - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \\ = - 2\displaystyle\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} + 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} = - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \end{array}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

I am trying to evaluate this integral:$$K = \displaystyle \int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx}$$

And here is my attempt so far:

$$\begin{gathered} K =\int\limits_0^1 {\frac{{{{\arctan }^2}\left( {\frac{x}{{1 - {x^2}}}} \right)}}{x}dx} \xrightarrow{{{\text{IBP}}}} - 2\int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} = - 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^1 {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ =- 2\int\limits_0^1 {\frac{{{x^2}\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} + 2\underbrace {\int\limits_1^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} }_{x \to \frac{1}{x}} = - 2\int\limits_0^\infty {\frac{{\arctan \left( {\frac{x}{{1 - {x^2}}}} \right)\ln \left( x \right)}}{{{x^4} - {x^2} + 1}}dx} \hfill \\ \end{gathered}$$

The last integral seems can be evaluated by using complex integration technique. But I don't know how to use it. And can I ask for help or another approach? Thank you so much.

[Edit removed during grace period]
Source Link
OnTheWay
  • 4.3k
  • 7
  • 23
Source Link
OnTheWay
  • 4.3k
  • 7
  • 23
Loading