Skip to main content
added 15 characters in body
Source Link

It is true that the substitutions suggested by the OP lead to another substitution and then partial fraction decomposition. But the following method, although it involves trigonometry, is much simpler than substituting $y=\sin\theta$ (or $y=\tanh u$).

By applying the following transformation formula

$$\int f\left(y, \sqrt{y^2-a^2}, \frac{\sqrt{y-a}}{\sqrt{y+a}}\right)\,dy= \int f\left(\frac{e^{-i\alpha}+e^{i\alpha}}{2}a, \frac{e^{i\alpha}-e^{-i\alpha}}{2}a, \frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}\right)\,\frac{e^{i\alpha}-e^{-i\alpha}}{2i}a\,d\alpha,$$

where $\alpha=\cos^{-1}(y)$, $y\in[0, 1]$ and $a>0$, your integral becomes

$$\begin{aligned}\int \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= \int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha \\&= \int \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= 2\int \frac{1}{\sin^2(\alpha) - 2}\,d\alpha + \int 1\,d\alpha\\&=\int1\,d\alpha-2\int \frac{\sec^2(\alpha)}{\tan^2(\alpha)+2}\,d\alpha\qquad \left(\text{Since $\sin(\alpha)=\frac{\tan(\alpha)}{\sec(\alpha)}$.}\right)\\&=\alpha-\sqrt{2}\tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right)+C.\qquad \left(\text{Since $\int \frac{dx}{x^2+a^2}=\frac1a\tan^{-1}\left(\frac{x}{a}\right) + C$.}\right) \end{aligned}$$

For the integration limits, we have that $\cos^{-1}(0)=\frac{\pi}{2}$ and $\cos^{-1}(1)=0$. Reversing the interval limits with a negative sign, we have

$$\begin{aligned}\int_{0}^{1} \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= -\int_{0}^{\frac{\pi}{2}} \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha\bigg|_{0}^{\frac{\pi}{2}}\\&=\lim_{{\alpha \to \frac{\pi}{2}^{-}}} \left( \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha \right)-0\\&=\color{red}{\frac{1}{2} (\sqrt{2}-1) \pi} \end{aligned}$$

Alternatively, you have the option of converting the integral

$$\int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha$$

into an integral of a rational function and then applying partial fraction decomposition. However, this method, although more mechanical, would not be as simple as the solution I give above.

It is true that the substitutions suggested by the OP lead to another substitution and then partial fraction decomposition. But the following method, although it involves trigonometry, is much simpler than substituting $y=\sin\theta$ (or $y=\tanh u$).

By applying the following transformation formula

$$\int f\left(y, \sqrt{y^2-a^2}, \frac{\sqrt{y-a}}{\sqrt{y+a}}\right)\,dy= \int f\left(\frac{e^{-i\alpha}+e^{i\alpha}}{2}a, \frac{e^{i\alpha}-e^{-i\alpha}}{2}a, \frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}\right)\,\frac{e^{i\alpha}-e^{-i\alpha}}{2i}a\,d\alpha,$$

where $\alpha=\cos^{-1}(y)$, $y\in[0, 1]$ and $a>0$, your integral becomes

$$\begin{aligned}\int \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= \int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha \\&= \int \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= 2\int \frac{1}{\sin^2(\alpha) - 2}\,d\alpha + \int 1\,d\alpha\\&=\int1\,d\alpha-2\int \frac{\sec^2(\alpha)}{\tan^2(\alpha)+2}\,d\alpha\qquad \left(\text{Since $\sin(\alpha)=\frac{\tan(\alpha)}{\sec(\alpha)}$.}\right)\\&=\alpha-\sqrt{2}\tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right)+C.\qquad \left(\text{Since $\int \frac{dx}{x^2+a^2}=\frac1a\tan^{-1}\left(\frac{x}{a}\right) + C$.}\right) \end{aligned}$$

For the integration limits, we have that $\cos^{-1}(0)=\frac{\pi}{2}$ and $\cos^{-1}(1)=0$. Reversing the interval limits with a negative sign, we have

$$\begin{aligned}\int_{0}^{1} \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= -\int_{0}^{\frac{\pi}{2}} \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha\bigg|_{0}^{\frac{\pi}{2}}\\&=\lim_{{\alpha \to \frac{\pi}{2}^{-}}} \left( \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha \right)-0\\&=\color{red}{\frac{1}{2} (\sqrt{2}-1) \pi} \end{aligned}$$

Alternatively, you have the option of converting the integral

$$\int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha$$

into a rational function and then applying partial fraction decomposition. However, this method, although more mechanical, would not be as simple as the solution I give above.

It is true that the substitutions suggested by the OP lead to another substitution and then partial fraction decomposition. But the following method, although it involves trigonometry, is much simpler than substituting $y=\sin\theta$ (or $y=\tanh u$).

By applying the following transformation formula

$$\int f\left(y, \sqrt{y^2-a^2}, \frac{\sqrt{y-a}}{\sqrt{y+a}}\right)\,dy= \int f\left(\frac{e^{-i\alpha}+e^{i\alpha}}{2}a, \frac{e^{i\alpha}-e^{-i\alpha}}{2}a, \frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}\right)\,\frac{e^{i\alpha}-e^{-i\alpha}}{2i}a\,d\alpha,$$

where $\alpha=\cos^{-1}(y)$, $y\in[0, 1]$ and $a>0$, your integral becomes

$$\begin{aligned}\int \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= \int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha \\&= \int \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= 2\int \frac{1}{\sin^2(\alpha) - 2}\,d\alpha + \int 1\,d\alpha\\&=\int1\,d\alpha-2\int \frac{\sec^2(\alpha)}{\tan^2(\alpha)+2}\,d\alpha\qquad \left(\text{Since $\sin(\alpha)=\frac{\tan(\alpha)}{\sec(\alpha)}$.}\right)\\&=\alpha-\sqrt{2}\tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right)+C.\qquad \left(\text{Since $\int \frac{dx}{x^2+a^2}=\frac1a\tan^{-1}\left(\frac{x}{a}\right) + C$.}\right) \end{aligned}$$

For the integration limits, we have that $\cos^{-1}(0)=\frac{\pi}{2}$ and $\cos^{-1}(1)=0$. Reversing the interval limits with a negative sign, we have

$$\begin{aligned}\int_{0}^{1} \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= -\int_{0}^{\frac{\pi}{2}} \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha\bigg|_{0}^{\frac{\pi}{2}}\\&=\lim_{{\alpha \to \frac{\pi}{2}^{-}}} \left( \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha \right)-0\\&=\color{red}{\frac{1}{2} (\sqrt{2}-1) \pi} \end{aligned}$$

Alternatively, you have the option of converting the integral

$$\int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha$$

into an integral of a rational function and then applying partial fraction decomposition. However, this method, although more mechanical, would not be as simple as the solution I give above.

Source Link

It is true that the substitutions suggested by the OP lead to another substitution and then partial fraction decomposition. But the following method, although it involves trigonometry, is much simpler than substituting $y=\sin\theta$ (or $y=\tanh u$).

By applying the following transformation formula

$$\int f\left(y, \sqrt{y^2-a^2}, \frac{\sqrt{y-a}}{\sqrt{y+a}}\right)\,dy= \int f\left(\frac{e^{-i\alpha}+e^{i\alpha}}{2}a, \frac{e^{i\alpha}-e^{-i\alpha}}{2}a, \frac{1-e^{-i\alpha}}{1+e^{-i\alpha}}\right)\,\frac{e^{i\alpha}-e^{-i\alpha}}{2i}a\,d\alpha,$$

where $\alpha=\cos^{-1}(y)$, $y\in[0, 1]$ and $a>0$, your integral becomes

$$\begin{aligned}\int \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= \int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha \\&= \int \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= 2\int \frac{1}{\sin^2(\alpha) - 2}\,d\alpha + \int 1\,d\alpha\\&=\int1\,d\alpha-2\int \frac{\sec^2(\alpha)}{\tan^2(\alpha)+2}\,d\alpha\qquad \left(\text{Since $\sin(\alpha)=\frac{\tan(\alpha)}{\sec(\alpha)}$.}\right)\\&=\alpha-\sqrt{2}\tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right)+C.\qquad \left(\text{Since $\int \frac{dx}{x^2+a^2}=\frac1a\tan^{-1}\left(\frac{x}{a}\right) + C$.}\right) \end{aligned}$$

For the integration limits, we have that $\cos^{-1}(0)=\frac{\pi}{2}$ and $\cos^{-1}(1)=0$. Reversing the interval limits with a negative sign, we have

$$\begin{aligned}\int_{0}^{1} \frac{\sqrt{1-y^2}}{1+y^2}\,dy &= -\int_{0}^{\frac{\pi}{2}} \frac{\sin^2(\alpha)}{\sin^2(\alpha) - 2}\, d\alpha \\&= \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha\bigg|_{0}^{\frac{\pi}{2}}\\&=\lim_{{\alpha \to \frac{\pi}{2}^{-}}} \left( \sqrt{2} \tan^{-1}\left(\frac{\tan(\alpha)}{\sqrt{2}}\right) - \alpha \right)-0\\&=\color{red}{\frac{1}{2} (\sqrt{2}-1) \pi} \end{aligned}$$

Alternatively, you have the option of converting the integral

$$\int \frac{{(e^{i \alpha} - e^{-i \alpha})^2}}{{(e^{i \alpha} - e^{-i \alpha})^2 + 8}}\, d\alpha$$

into a rational function and then applying partial fraction decomposition. However, this method, although more mechanical, would not be as simple as the solution I give above.