Skip to main content
Notice removed Authoritative reference needed by CommunityBot
Bounty Ended with no winning answer by CommunityBot
edited tags
Link
Alex Ravsky
  • 108.3k
  • 5
  • 65
  • 204
Notice added Authoritative reference needed by user1393402
Bounty Started worth 100 reputation by CommunityBot
Source Link
Aldo
  • 139
  • 1
  • 13

Free arcs in the Universal dendrite

Definition. A topological space $(X, \tau_X)$ is a continuum, if $X$ is a non-empty, metric, compact and connected space.

Definition. Let $X$ be a continuum and define $E(X)=\{p \in X: ord_X(p)=1\}$, $O(X)=\{p \in X: ord_X(p)=2\}$ and $R(X)=\{p \in X: ord_X(p) \geq 3\}$. $E(X)$, $O(X)$ and $R(X)$ denote the set of endpoints, ordinary points and branch points of $X$, respectively.

Definition. Let $(X, \tau_X)$ be a topological space, let $p \in X$, and let $\kappa$ be a cardinal number. We say that the order of $p$ in $X$, denoted by $\operatorname{ord}_X(p)$, is equal to $\kappa$ if the following conditions are satisfied:

  1. The order of $p$ in $X$ is less than or equal to $\kappa$; that is, for every open subset $U$ of $X$ containing $p$, there exists an open subset $V$ of $X$ such that $p \in V \subseteq U$ and $|\operatorname{fr}_X(V)| \leq \kappa$.
  2. $\kappa$ is the smallest cardinal number that satisfies condition (1); that is, for every cardinal number $\alpha < \kappa$, there exists an open subset $U_\alpha$ of $X$ containing $p$ such that for every open subset $W$ of $X$ with $p \in W \subseteq U_\alpha$, it holds that $|\operatorname{fr}_X(W)| > \alpha$.

Definition. An arc, is every topological space which is homeomorphic to the interval $[a,b]$. An arc with endpoints $a,b$ is denoted by $ab$.

Definition. Let $X$ be a topological space and $ab$ an arc, we said that $ab$ is a free arc if $ab \setminus \{a,b\}$ is open in $X$.

Definition. A continuum $X$ is called a dendrite if it is locally connected and contains no simple closed curves.

The Wazewski´s Universal dendrite is constructed as follows: enter image description here enter image description here enter image description here

I would like understand why the set of branch points is dense, I don´t see it. I would appreciate your help.