Moreover, this region is forward invariant. To prove that, we can use Nagumo's theorem, which states that it is sufficient to prove that the vector field is pointing inward into your set on its border. We can look at the $1$D-dynamics of $S$ over the interval $[0, S^*]$. At the edges, one has
The equations for these infectious compartments can be written in the general form:, for any $(S,\mathbf{x}) \in \mathcal{S}$,
$\mathbf{f}(S, \mathbf{x})$: the nonlinear coupling for a given number of susceptiblebetween $S$, and is the function defined by $$ \mathbf{f}(S, \mathbf{x}) = \begin{bmatrix} p \beta_1 S I_2 + q \beta_2 S J + r \beta_3 S A \\ (1-p) \beta_1 S I_2 + (1 - q) \beta_2 S J + (1 - r) \beta_3 S A \\ 0 \\ 0 \end{bmatrix} = S \begin{bmatrix} p \beta_1 I_2 + q \beta_2 J + r \beta_3 A \\ (1-p) \beta_1 I_2 + (1 - q) \beta_2 J + (1 - r) \beta_3 A \\ 0 \\ 0 \end{bmatrix} = S \begin{bmatrix} 0 & p\beta_1 & q\beta_2 & r\beta_3 \\ 0 & (1-p)\beta_1 & (1-q)\beta_2 & (1-r)\beta_3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} I_1 \\ I_2 \\ J \\ A \end{bmatrix} := S \mathbf{F} \mathbf{x}.$$ Interestingly, it is linear inother quantities. For a given number of susceptible $S$., one can rewrite the function as, $$ \mathbf{f}(S, \mathbf{x}) = %\begin{bmatrix} %p \beta_1 S I_2 + q \beta_2 S J + r \beta_3 S A \\ %(1-p) \beta_1 S I_2 + (1 - q) \beta_2 S J + (1 - r) \beta_3 S A \\ %0 \\ %0 %\end{bmatrix} = S \begin{bmatrix} p \beta_1 I_2 + q \beta_2 J + r \beta_3 A \\ (1-p) \beta_1 I_2 + (1 - q) \beta_2 J + (1 - r) \beta_3 A \\ 0 \\ 0 \end{bmatrix} = S \begin{bmatrix} 0 & p\beta_1 & q\beta_2 & r\beta_3 \\ 0 & (1-p)\beta_1 & (1-q)\beta_2 & (1-r)\beta_3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} I_1 \\ I_2 \\ J \\ A \end{bmatrix} := S\, \mathbf{F} \mathbf{x}.$$
$\mathbf{V}\mathbf{x}$: all other linear dynamics, $$ \begin{bmatrix} b_1 I_1 - \xi_1 J \\ b_2 I_2 - \epsilon I_1 - \xi_2 J \\ b_3 J - p_1 I_2 \\ b_4 A - p_2 J \end{bmatrix} = \begin{bmatrix} b_1 & 0 & -\xi_1 & 0 \\ -\epsilon & b_2 & -\xi_2 & 0 \\ 0 & -p_1 & b_3 & 0 \\ 0 & 0 & -p_2 & b_4 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ J \\ A \end{bmatrix} := \mathbf{V} \mathbf{x} $$
Remark: I didn't prove it theoretically, but I used symbolic calculus to confirm that. You will need to prove that theoretically, but it's fastidious in terms of(due to the notation), so I skipped that. I used Python's library Sympy. P.S.: I can think about an efficient proof.
$$ \mathbf{f}(S^*, \mathbf{x}^*) - \mathbf{V} \mathbf{x}^* = 0 \Leftrightarrow S^* \mathbf{F} \mathbf{x}^* = \mathbf{V} \mathbf{x}^* \Leftrightarrow \mathbf{x}^* = S^* \mathbf{V}^{-1} \mathbf{F} \mathbf{x}^* $$$$ \mathbf{f}(S^*, \mathbf{x}^*) - \mathbf{V} \mathbf{x}^* = 0 \Leftrightarrow S^* \mathbf{F} \mathbf{x}^* = \mathbf{V} \mathbf{x}^* \Leftrightarrow \mathbf{x}^* = S^* \mathbf{V}^{-1} \mathbf{F} \mathbf{x}^* \Leftrightarrow 0 = (S^* \mathbf{V}^{-1} \mathbf{F} - \mathbf{I}) \mathbf{x}^* $$
Then, the DFE is locally stable if the maximal eigenvalue of $\mathbf{V}^{-1}\mathbf{F} <1 \Leftrightarrow \mathcal{R}_0 <1$ by the Linearization principle.
Global Asymptotic Stability of DFE via Lyapunov argument
Differentiate the Lyapunov function: $$ \dot{L}(\mathbf{x}) = \mathbf{w}^\top \mathbf{V}^{-1} \dot{\mathbf{x}} $$
Now, substitute the system dynamics by writing the new infection term as $\mathbf{f}(S, \mathbf{x}) = \frac{S(t)}{S^*} \mathbf{F}\mathbf{x}$. The full system for the compartments is $\dot{\mathbf{x}} = \frac{S(t)}{S^*} \mathbf{F}\mathbf{x} - \mathbf{V}\mathbf{x}$. Then, \begin{align*} \dot{L}(\mathbf{x}) &= \mathbf{w}^\top \mathbf{V}^{-1} \left( \frac{S(t)}{S^*} \mathbf{F}\mathbf{x} - \mathbf{V}\mathbf{x} \right) = \frac{S(t)}{S^*} \mathbf{w}^\top \mathbf{V}^{-1} \mathbf{F}\mathbf{x} - \mathbf{w}^\top (\mathbf{V}^{-1} \mathbf{V})\mathbf{x} \\ &= \frac{S(t)}{S^*} \mathbf{w}^\top (\mathbf{V}^{-1} \mathbf{F})\mathbf{x} - \mathbf{w}^\top \mathbf{x} \end{align*}
Now we substitute the property of our weight vector, $\mathbf{w}^\top (\mathbf{V}^{-1}\mathbf{F}) = \mathcal{R}_0 \mathbf{w}^\top$, into the equation. $$ \dot{L}(\mathbf{x}) = \frac{S(t)}{S^*} (\mathcal{R}_0 \mathbf{w}^\top) \mathbf{x} - \mathbf{w}^\top \mathbf{x} = \left( \frac{S(t)}{S^*} \mathcal{R}_0 - 1 \right) \mathbf{w}^\top \mathbf{x} $$
An attracting region where the derivative is always negative: From the first equation of your system, $$\dot{S} = \mu - (\text{infection terms}) - \nu S.$$
Since the infection terms are non-negative, we have the inequality
$$\dot{S} \le \mu - \nu S.$$ Using Gronwall implies $S(t) \leq S^* = \mu/\nu$ for large $t$. i.e., the region $S \le S^*$ is attracting.
LetWe know from the previous discussion that $$\mathcal{S} = \left\{ (S, \mathbf{x}) \in \mathbb{R}_+^5 \mid S(t) \le S^* \right\}.$$$$\mathcal{S} = \left\{ (S, \mathbf{x}) \in \mathbb{R}_+^5 \mid S(t) \le S^* \right\},$$
is 'globally' attracting and forward invariant. Then, forthere exists some time $t\geq 0$ such that $S(t) \in \mathcal{S}$. (We have to be cautious here, need to think more.) We then only need to look at the behaviors of our Lyapunov function on $\mathcal{S}$. For any $(S,\mathbf{x}) \in \mathcal{S}$$S \in \mathcal{S}$, we have $\frac{S(t)}{S^*} \le 1$$\frac{S}{S^*} \le 1$.
If we assume $\mathcal{R}_0 \le 1$, then the product $\frac{S(t)}{S^*} \mathcal{R}_0 \le 1 \cdot \mathcal{R}_0 \le 1$$\frac{S}{S^*} \mathcal{R}_0 \leq \mathcal{R}_0 \leq 1$. Therefore, the term $\left( \frac{S(t)}{S^*} \mathcal{R}_0 - 1 \right)$ must be less than or equal to zero. Since we already established that $\mathbf{w}^\top \mathbf{x} \ge 0$, we have proven that, for any $(S, \mathbf{x}) \in \mathcal{S}$, $$ \dot{L}(\mathbf{x}) \leq 0.$$ This proves that the DFE is locally stable.
Apply LaSalle's Invariance Principle for global stability: To prove asymptotic stability, we must identify the largest invariant set in $\mathcal{S}$ where $\dot{L}(\mathbf{x}) = 0$.
$\dot{L}(\mathbf{x}) = 0$ requires that $\left( \frac{S(t)}{S^*} \mathcal{R}_0 - 1 \right) \mathbf{w}^\top \mathbf{x} = 0$. This means that on the invariant set, for all time, either $\mathbf{x}(t)=\mathbf{0}$ or $\frac{S(t)}{S^*} \mathcal{R}_0 = 1$.
Case 1: $\mathcal{R}_0 < 1$. Since $S(t) \le S^*$, we have $\frac{S(t)}{S^*} \mathcal{R}_0 < 1 $. The condition $\frac{S(t)}{S^*} \mathcal{R}_0 = 1$ is impossible. Therefore, the only possibility for $\dot{L}(\mathbf{x})=0$ is that $\mathbf{w}^\top \mathbf{x} = 0$. Since $\mathbf{w}$ and $\mathbf{x}$ are non-negative vectors and $\mathbf{w}$ is non-zero, this forces $\mathbf{x}=\mathbf{0}$ (i.e., $I_1=I_2=J=A=0$). If the system is in a state where all infectious compartments are zero, the first ODE becomes $\dot{S} = \mu - \nu S$, whose only equilibrium is $S(t) = \mu/\nu = S^*$. Thus, the only invariant set is the DFE, $e_1$.
Case 2: $\mathcal{R}_0 = 1$. Now, $\dot{L} = 0$ implies either $\mathbf{x}(t)=\mathbf{0}$ (which leads to the DFE as above) or $S(t)=S^*$. Let's analyze the second possibility. If a trajectory stays in the set where $S(t)=S^*$ for all $t$, then we must have $\dot{S}=0$. Plugging $S=S^*$ into the first ODE gives $$0 = \mu - (\beta_1 S^* I_2 + \beta_2 S^* J + \beta_3 S^* A) - \nu S^*.$$
Since $\mu = \nu S^*$, this simplifies to $$\beta_1 S^* I_2 + \beta_2 S^* J + \beta_3 S^* A = 0.$$
As all parameters and variables are non-negative, this forces $I_2 = J = A = 0$. With these compartments being zero, the system for $I_1$ becomes $\dot{I_1} = -b_1 I_1$, which implies $I_1(t) \to 0$. Therefore, any trajectory must approach a state where all infectious compartments are zero. Again, the only invariant set is the DFE, $e_1$.
By LaSalle's Invariance Principle, since the only invariant set contained in $\mathcal{S}$ where $\{\dot{L}=0\}$ is the DFE, all solutions in the feasible region converge to the DFE, $e_1$, when $\mathcal{R}_0 \le 1$. Thus, the DFE is globally asymptotically stable.
By LaSalle's Invariance Principle, since the only invariant set contained in $\mathcal{S}$ where $\{\dot{L}=0\}$ is the DFE, all solutions in the feasible region converge to the DFE, $e_1$, when $\mathcal{R}_0 \le 1$. Thus, the DFE is globally asymptotically stable.